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= Founded: 2006
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|. DATA SCIENCE APPLICATIONS
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|. DATA SCIENCE APPLICATIONS

Everything is a Recommendation
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|. DATA SCIENCE APPLICATIONS

Netflix: 2/3 of the movies watched are
recommended

Google News: recommendations generate
38% more clickthrough

Amazon: 35% sales from recommendations

Choicestream: 28% of the people would buy
more music if they found what they liked.

[4] Xavier 2014
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e A6E oF DISCOVERY

* Chris Anderson in “The Long Tail”
* “We are leaving the age of information and entering the age
of recommendation”

* CNN Money, “The race to create a 'smart' Google”:

» “The Web, they say, is leaving the era of search and
entering one of discovery. What's the difference? Search is
what you do when you're looking for something. Discovery
is when something wonderful that you didn't know existed,
or didn't know how to ask for, finds you.”

[4] Xavier 2014
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rae PERSONAL EXPERIENCES

MAN MEDIA MACHINE
From people: friends, co-workers, family, From media sources: social media, music blogs, From algorithms: personalized playlists
acquaintances, anything person to person. musicians, live shows, TV, movies. on Spotify like Release Radar.
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|. DATA SCIENCE APPLICATIONS

Final project for "How to win a data science T

eompetit:»on' Coursera course . izer Knowledge
Learn computer vision fundamentals with the famous MNIST data 2,577 teams a o / : h O | | e r—] e
Titanic: Machine Learning from Disaster Knowledge
Start here! Predict survival on the Titanic and get familiar with ML basics 10,433 teams

lusex oAb Hegrasibns tacmiiues Music Genre Classification Voice Gender Classification ~ Landmark Identification

4,322 teams

Predict sales prices and practice feature engineering, RFs, and gradient boosting

Nguyen Ba Dung Team VietAl Team Phoenixxx

ImageNet Object Localization Challenge Knowledge
IMAGE Identify the objects in images 36 teams
Predict Future Sales Kudos
Final project for "How to win a data science competition” Coursera course 2,630 teams
Playground
iN iNaturalist 2019 at FGVC6 Kudos
INat i 1team
201 9 Fine-grained classification spanning a thousand species
iWildCam 2019 - FGVC6 Kudos

Categorize animals in the wild 27 teams
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|. DATA SCIENCE APPLICATIONS

//
ata sclentist IS

the sexiest job,

of the 21st century.

Harvard Business Review




2.

Y - STATISTICS

= 1763 — Thomas Bayes — English statistician

P(A|B) =

P(B

Bayes theorem

= 1763 - Carl Friedrich Gauss (1809) (1821) & Lengendre (1805)
Regression — Method of least squares — predict the movement of planet

[10] — regression analysis
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2. HISTORY - STATISTIC

= 1962 - John W. Tukey — US mathematician
“The Future of data analytics” - “I have come to feel that my central interest is
in data analysis... Data analysis, and the parts of statistics ...”

= 1976 - Peter Naur — Danish Computer Scientist

“Datalogy, the science of data and of data processes and its place in education” -
“Data Science - The science of dealing with data, once they have been established,
while the relation of the data to what they represent is delegated to other fields and
sciences.”

= 1977 The International Association for Statistical Computing
“It is the mission of the IASC to link traditional statistical methodology, modern
computer technology, and the knowledge of domain experts in order to convert

data into information and knowledge.”
{
[9] Gil Press 2013 @



http://www.iasc-isi.org/

¢. HISTORY - STATISTICS

B, "Tw = 1989 —KDD - SIGKDD Conference on Knowledge Discovery and Data Mining
- N1 First conference about data mining

= 1994 - Business week “Databased Marketing”

Companies are collecting mountains of information about you, crunching it to
predict how likely you are to buy a product, and using that knowledge to craft
a marketing message precisely calibrated to get you to do so...

= 1997 — Professor C. F. Jeff Wu - University of Michigan
calls for statistics to be renamed data science and statisticians to be renamed

data scientists.

= 1999 - Prof. Moshe Zviran
“ Conventional statistical methods work well with small data sets. Today's databases,

however, can involve millions of rows and scores of columns of data ... “ @
{
[9] Gil Press 2013




2. HISTO!

Y — DATR

Symbolic concept induction

MINING

Successful applications
IR & ranking

MIML
Active & online learning Transfer learning

Dat ini
Multi strategy learning ata mining

Minsky criticism NN, GA, EBL, CBL

Kernel methods :
Abduction, Analogy Sparse learning
Pattern Recognition emerged

Revival of non-symbolic learning Bayesian methods

PAC learning ILP Semi-supervised learning Deep learning

. ] Dimensionality reduction
Math discovery AM Experimental comparisons

Probabilistic graphical models

Supervised learning Statistical learning

Neural modeling

Unsupervised learning Ensemble methods Nonparametric Bayesian
Rote learning Reinforcement learning Structured prediction
1950 1960 1970 1980 1990 2000 2010
ICML (1982) ECML (1989) KDD (1995) PAKDD (1997) ACML (2009)
N VAN U\ AN DAANG /]
Y Y Y Y YT
enthusiasm dark age renaissance explosion fast development
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2. THE HISTORY

COMPUTATION

Moore’s Law — The number of transistors on integrated circuit chips (1971-2016) [SUaeE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years.
This advancement is important as other aspects of technological progress — such as processing speed or the price of electronic products — are

strongly linked to Moore's law.
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Data source: Wikipedia (https://en.wikipedia.org/wiki/Transistor_count)

The data visualization is available at OurWorldinData.org. There you find more visualizations and research on this topic.

Year of introduction

Licensed under CC-BY-SA by the author Max Roser.

Gordon Earle Moore
US Businessman



2. HISTORY — BIG DATA

BIG DATA 90% OF THE AVAILABLE DATA HAS BEEN
A BRIEF HISTORY

CREATED IN THE LAST TWO YEARS

& Q If the Digital
A The Digital >, Universe were

Universe is Huge represented by the
4 ) 4 —And Growing 44 memory in a stack
| Exponentially I 7B of tablets, in 2013
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way to the Moon*
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By 2020, there
would be 6.6 stacks
from the Earth to
the Moon*

[11] Bigdata - 2016 @




2. HISTORY — BIG DATA
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“The average person today processes more data in a single day than
a person in the 1500’s did in an entire life time”

Src: [12]
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2. HISTORY— APPLICATION - DIGITAL WAVES

Digital Waves
2020

Creative destruction
&i‘g {4th wave)

2010
Al & Robotics ™ Knowledge

B Man-machine collaboration

3rd wave
2000 Srd waved
o 2nd | Internet of Things(loT)
Devices ‘n Waves M Physical and digital convergence
Ist W—E?V/e' Mobile Internet M Real time M Anywhere

Internet

, : New Industrial Revolution

Src: [14]



2. HISTORY

DOMAIN
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*DJ Patil (2015)

[8] Dataconomy 2016



J. DATA SCIENCE & BIG DATA

DATA PREPARATION EXPLORATORY DATA ANALYSIS DATA MODELING
MaEhlnE DATA CLEANING TRANSFORMATION DEFINES AND REFINES
LEEFning B p— D & THE SELECTION OF FEATURE
Lomputer Math and B :

Science/Il Statistics

AAAAAAAAAAAAAAA

ccccc

Softwarg S Traditional D .A.T.A. SCIENCE *

Development Research

WHY 2. WHY2... WHY?,
v DEPLOYS AN o

Domains/Business
Knowledge

[17] Towards Data Science 2018 [18] SimpliLearn @
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TYPE OF DATA

Structural data Unstructured data
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TYPE OF MACHINE LERRNING

Regression
Income prediction
Credit scoring

MACHINE LEARNING

Classification
Bad user detection
Fraud detection

Clustering
Topic modeling

v v v v v v
v v \ 4

REGRESSION CLUSTERING MODEL-FREE

DIMENSION
CLASSIFICATION MODEL BASED

REDUCTION Dimension reduction

TSNE
©

PCA




LEARNING PROCESSING

Lich str tin dung cua user ‘%
-
Lich str cua goéi tin dung @

00-750
750850
GoOD

@D

-y Credit scoring
Thong tin khach hang é
v / \ Y /
“Learning”
Input > Output

“Representation Learning” or “Feature learning”



LEARNING PROCESSING

A Neural Network is a function that can learn

Original Color Image

Matlab RCB Matrix

(um.so)

PHOTOS

DOG

JAREA

Input

“Learning”

ouTPUT

_»cal

v/ GOT
IT

Output
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SALLOW LEARNING VS DEEP LEARNING

> OUTPUT:
HDOgM

Logistic Regression Model

Image

broken
info pixels  Layer 1 L2 L3 L4
Sad Pixel Edges  Combinations Features
values identified  of edges identified
defected identified
Inputs: X1,X2,X3 || Weights: ©1,02,03 || Outputs: Happy or Sad

@dataaspirant.com

“Feature Engineering” or “Feature Selection” Deep learning
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LEARNING PROCESSING

TEST (20k loans)
TRAIN (100k loans)
Features: User behaviors —
Thong tin goi vay
Thong tin tin dung

20k loans

S

o OO ™) () ¢m
Credit Scoring

Predicted validation
Outcome

Q,’



LEARNING PROCESSING

TRAIN (100k loans) TEST

UNKNOWN TARGET DISTRIBUTION PROBABILITY
Ply TX) DISTRIBUTION
target function £ X—=7% plus noise
Pon X
XX
TRAINING EXAMPLES N
(X1 Y | (st}f\,) ERROR

/ MEASURE
e() g(X)=f(x)
LEARNING FINAL

—> HYPOTHESIS
g:- Xy

ALGORITHM

HYPOTHESIS SET

HYPOTHESIS SET
H
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1. BIG DATA — WH?

D liéu I6n ndi vé cac
tap div liéu rat Ién
va/hoic rat phurc tap,
vwot qua kha nang xur
ly cta cac ky thuat IT
truyén thong (View 1),

Processing

Capabilities

Src:[1]

petabytes (10%),
zetabytes (10%8)
even bigger

Khong ngirng
chuyén dong.

N

Variety

-

Hon hop, cu trdc,
khong cau trdc.

Nhiéu, sai,

khong chinh xac.

T IS BIG DATA?

Volume

Data Size

Data

Complexity
% .
L S % e _— & &
Q/o Q?Q@ . O%o‘\}oi\zd

“Big data is high-volume, high-velocity and/or
high-variety information assets that demand
cost-effective, innovative forms of information
processing that enable enhanced insight,
decision making, and process automation.” -

Gartner

Src: [5] @



. BIG DATA — VALUE OF BIG DATA ANALYTICS

“Big data is high-volume, high-velocity and/or high-variety information assets that
demand cost-effective, innovative forms of information processing that enable

enhanced insight, decision making, and process automation.” - Gartner

Obtaining by
- Perceiving
- Discovering
- Learning

Obtaining by
- Processing

Obtaining by
- Observing
- Measuring
- Collecting

Information

Data

Integrated information, including facts

and their relations (“justified true
belief)

[s this road appropriate for such amount of cars?

Data equipped with meaning

Average of number of cars each hour, each
day, each week, each year on the road.

Un-interpreted signal

Number of cars counted on a road by

hours, by days of the week, by months.

Src: [5]

Src: [1]
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J. COURSE

a—

© © N O ;o & ® N
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SCHEMA

Introduction (15t days)

The learning problems [Caltech, Microsoft (bitshop)] (2*¢ day)
Exploratory Data Analysis — Data visualization [R] (279 day)
Bias — variance trade-off. [Caltech] (3™ day)

Overfitting vs Underfitting [Caltech, Stanford] (3 day)
Learning curve (3 day)

Running model [R] (3* day)

Cross Validation [Caltech, Stanford] (4 day)
Regularization (4™ day)

Tuning [R] (4™ day)

Learning Principal [Caltech] (5rd day)

Evaluation [sonpvh] (5rd day) [R]

Summary

(=)



= 31/3: outlier + 5 presentation
= 6/4: feedback (thay Phu) + code R (son)
= 13/4: full code R (son)

o
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