BÀI GIẢNG 5: NỀN KINH TÉ THỰC

ĐỖ THIÊN ANH TUẤN

TRƯỜNG CHÍNH SÁCH CÔNG VÀ QUẢN LÝ
ĐẠI HỌC FULBRIGHT VIỆT NAM

A large income is the best recipe for happiness I ever heard of.
-Jane Austen

GDP BY INDUSTRIAL ORIGIN AT CURRENT MARKET PRICES (VND BILLION)

F
Agriculture, forestry, and fishing

WHAT DETERMINES THE TOTAL PRODUCTION OF GOODS AND SERVICES?

- Factors of production are the inputs used to produce goods and services. The two most important factors of production are capital and labor.

$$
Y=F(K, L)
$$

- Many production functions have a property called constant returns to scale. A production function has constant returns to scale if an increase of an equal percentage in all factors of production causes an increase in output of the same percentage.

$$
z Y=F(z K, z L)
$$

- Because we assume that the supplies of capital and labor and the technology are fixed, output is also fixed.

$$
Y=F(\bar{K}, \bar{L})=\bar{Y}
$$

THE DECISIONS FACING A COMPETITIVE FIRM

$$
Y=F(K, L)
$$

- Profit $=$ Revenue - Labor costs - Capital costs

$$
=P Y-W L-R K
$$

- Profit $=P F(K, L)-W L-R K$

Source: 123rf.com

THE MARGINAL PRODUCT OF LABOR

- The marginal product of labor (MPL) is the extra amount of output the firm gets from one extra unit of labor, holding the amount of capital fixed.

$$
M P L=F(K, L+1)-F(K, L)
$$

- Most production functions have the property of diminishing marginal product: holding the amount of capital fixed, the marginal product of labor decreases as the amount of labor increases.

FROM THE MARGINAL PRODUCT OF LABOR TO LABOR DEMAND

- The Production Function This curve shows how output depends on labor input, holding the amount of capital constant.
- The marginal product of labor MPL is the change in output when the labor input is increased by 1 unit.
- As the amount of labor increases, the production function becomes flatter, indicating diminishing marginal product.

HOW IS MPL DETERMINED?

- Δ Profit $=\Delta$ Revenue $-\Delta$ Cost

$$
=(\mathrm{P} \times \mathrm{MPL})-\mathrm{W}
$$

- The competitive firm's demand for labor is determined by:

$$
\begin{aligned}
& \mathrm{P} \times \mathrm{MPL}=\mathrm{W} \\
& \Rightarrow \mathrm{MPL}=\mathrm{W} / \mathrm{P}
\end{aligned}
$$

- W / P is the real wage - the payment to labor measured in units of output rather than in dollars.
Real wage

THE MARGINAL PRODUCT OF CAPITAL

- The marginal product of capital (MPK) is the amount of extra output the firm gets from an extra unit of capital, holding the amount of labor constant.

$$
M P K=F(K+1, L)-F(K, L)
$$

- Δ Profit $=\Delta$ Revenue $-\Delta$ Cost

$$
=(P \times M P K)-R
$$

- To maximize profit, the firm continues to rent more capital until the MPK falls to equal the real rental price:

$$
M P K=R / P
$$

ECONOMIC PROFIT

- Economic profit $=Y-(M P L x L)-(M P K \times K)$

$$
Y=(M P L x L)+(M P K x K)+\text { Economic profit }
$$

- If the production function has the property of constant returns to scale, as is often thought to be the case, then economic profit must be zero. That is, nothing is left after the factors of production are paid.

$$
F(K, L)=(M P K \times K)+(M P L \times L)
$$

THE COBB-DOUGLAS PRODUCTION FUNCTION

- Capital Income $=$ MPK x K $=\alpha Y$
- Labor Income $=$ MPL x L $=(1-\alpha) Y$
- Where α is a constant between zero and one that measures capital's share of income.
- Cobb-Douglas production function:

$$
F(K, L)=A K^{\alpha} L^{1-\alpha}
$$

- Where A is a parameter greater than zero that measures the productivity of the available technology.

THE MARGINAL PRODUCT OF LABOR AND MARGINAL PRODUCT OF CAPITAL

- The marginal product of labor

$$
\begin{aligned}
\mathrm{MPL} & =(1-\alpha) A K^{\alpha} L^{-\alpha} \\
& =(1-\alpha) \mathrm{Y} / \mathrm{L}
\end{aligned}
$$

- Marginal product of capital

$$
\begin{aligned}
\mathrm{MPL} & =\alpha A K^{\alpha-1} L^{1-\alpha} \\
& =\alpha \mathrm{Y} / \mathrm{K}
\end{aligned}
$$

EXPENDITURE ON GDP AT CURRENT MARKET PRICES (VND BILLION)

	$\underline{\mathbf{2 0 1 7}}$	$\underline{\mathbf{2 0 1 8}}$	$\mathbf{2 0 1 7}$	$\mathbf{2 0 1 8}$
Expenditure on GDP at current market prices	5.005 .975	5.542 .332	100%	100%
Final consumption expenditure	3.731 .554	4.103 .655	75%	74%
Household final consumption	3.405 .750	3.745 .063	68%	68%
Government final consumption	325.804	358.591	7%	6%
Gross capital formation	1.330 .694	1.470 .550	27%	27%
Gross fixed capital formation	1.190 .475	1.321 .906	24%	24%
Changes in inventories	140.220	148.645	3%	3%
Exports of goods and services	5.085 .742	5.865 .550	102%	106%
Less: Imports of goods and services	4.945 .460	5.679 .497	99%	102%
Statistical discrepancy	-196.555	-217.926	-4%	-4%

DEMAND FOR GOODS

- $Z=C+I+G+X-M$
- Consumption
- $C=C\left(Y_{d}\right)=c_{0}+c_{l} * Y_{d}$
- Disposable Income: $Y_{d}=Y-T$
- $\mathrm{c}_{1}=$ MPC $=$ Marginal Propensity to Consume
- $M P C=1-M P S$

Consumption, C

Consumption Function

INVESTMENT

- Models have two types of variables. Some variables depend on other variables in the model and are therefore explained within the model. Variables like these are called endogenous variables.
- Other variables are not explained within the model but are instead taken as given. Variables like these are called exogenous variables.

$$
I=I(r)
$$

- We take investment as given to keep our model simple

$$
I=\bar{I}
$$

Real
interest rate, r

GOVERNMENT SPENDING

- Together with taxes T, G describes fiscal policy-the choice of taxes and spending by the government.
- Just as we just did for investment, we will take G and T as exogenous.

$$
\boldsymbol{G}=\overline{\boldsymbol{G}}
$$

NET EXPORT

- Net export $=$ exports - imports
- $N E=X-M$

$$
N E=N E(\varepsilon)
$$

- Where ε is real exchange rate.
- To simplify:

$$
N E=\overline{N E}=0
$$

EQUILIBRIUM IN THE GOODS MARKET

- The demand for goods is the sum of consumption, investment, government spending and net export:

$$
Z=c_{0}+c_{l}(Y-T)+\bar{I}+\bar{G}
$$

- Equilibrium in the goods market requires that production Y be equal to the demand for goods Z:

$$
\begin{gathered}
Y=Z \\
Y=c_{0}+c_{I}(Y-T)+\bar{I}+\bar{G}
\end{gathered}
$$

- In equilibrium, production, Y (the left side of the equation), is equal to demand (the right side).Demand in turn depends on income, Y, which is itself equal to production.

AUTONOMOUS SPENDING VS. MULTIPLIER

- $Y=c_{0}+c_{1} Y-c_{1} T+\bar{I}+\bar{G}$
$\Rightarrow\left(1-c_{1}\right) Y=c_{0}+\bar{I}+\bar{G}-c_{1} T$
$\Rightarrow Y=\frac{1}{1-c_{1}}\left(c_{0}+\bar{I}+\bar{G}-c_{1} T\right)$
- The term $\left(\mathrm{c}_{0}+\bar{I}+\bar{G}-\mathrm{c}_{1} \mathrm{~T}\right)$ is that part of the demand for goods that does not depend on output. For this reason, it is called autonomous spending.
- The term $\frac{1}{1-c_{1}}$ is called the multiplier

EQUILIBRIUM IN THE GOODS MARKET

Equilibrium output is determined by the condition that production is equal to demand.

AN ALTERNATIVE WAY OF THINKING ABOUT GOODS-MARKET EQUILIBRIUM

- Private Saving: $S_{P}=Y_{d}-C=Y-T-C$
- Government Saving: $\mathrm{S}_{\mathrm{g}}=\mathrm{T}-\mathrm{G}$
- Foreign Saving: $S_{f}=M-X$
- Total saving: $\mathrm{S}=\mathrm{S}_{\mathrm{p}}+\mathrm{S}_{\mathrm{g}}+\mathrm{S}_{\mathrm{f}}$

To summarize: There are two equivalent ways of stating the

- Investment $=$ Saving:
condition for equilibrium in the goods market:

Production $=$ Demand
Investment $=$ Saving

$$
I=S_{p}+(T-G)+(M-X)
$$

To simplify: $M-X=0$

$$
I=S_{p}+(T-G)
$$

INVESTMENT EQUALS SAVING

$$
\begin{gathered}
S=Y-T-C \\
=Y-T-c_{0}-c_{l}(Y-T) \\
\Rightarrow S=-c_{0}+\left(1-c_{1}\right)(Y-T) \\
\Rightarrow I=-c_{0}+\left(1-c_{1}\right)(Y-T)+(T-G)
\end{gathered}
$$

- Solving for output:
- $\mathrm{Y}=\frac{1}{1-c_{1}}\left(\mathrm{c}_{0}+\bar{I}+\bar{G}-\mathrm{c}_{1} \mathrm{~T}\right)$

THE PARADOX OF SAVING

- As people save more at their initial level of income, they decrease their consumption. But this decreased consumption decreases demand, which decreases production.
- When income Y is lower, this decreases saving. Although people want to save more at a given level of income, their income decreases by an amount such that their saving is unchanged.
- This means that as people attempt to save more, the result is both a decline in output and unchanged saving. This surprising pair of results is known as the paradox of saving (or the paradox of thrift).

APPENDIX

- The Cobb-Douglas Function

$$
F(K, L)=A K^{\alpha} L^{1-\alpha}
$$

- Why this function has constant returns to scale?

$$
\begin{gathered}
F(z K, z L)=A(z K)^{\alpha}(z L)^{1-\alpha} \\
\Rightarrow F(z K, z L)=A z^{\alpha} K^{\alpha} z^{1-\alpha} L^{1-\alpha} \\
\Rightarrow F(z K, z L)=A z^{\alpha} z^{1-\alpha} K^{\alpha} L^{1-\alpha} \\
\Rightarrow F(z K, z L)=z A K^{\alpha} L^{1-\alpha}=z F(K, L)=z Y
\end{gathered}
$$

