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Abstract 
This guide1 helps you think through how to design and analyze experiments when there is a 
risk of “interference” between units. This has been an important area of research in recent 
years and there have been real gains in our understanding of how to detect spillover effects. 
Spillovers arise whenever one unit is affected by the treatment status of another unit. 
Spillovers make it difficult to work out causal effects (we say why below). Experimentalists 
worry a lot about them, but the complications that spillovers create are not unique to 
randomized experiments. 

1. What they are 
Spillovers refer to a broad class of instances in which a given subject is influenced by 
whether other subjects are treated. 

Here are some examples of how spillovers (or “interference”) might occur: 

• Public Health: Providing an infectious disease vaccine to some individuals may 
decrease the probability that nearby individuals become ill. 

• Criminology: Increased enforcement may displace crime to nearby areas. 
• Education: Students may share newly acquired knowledge with friends. 
• Marketing: Advertisements displayed to one person may increase product 

recognition among her work colleagues. 
• Politics: Election monitoring at some polling stations may displace fraud to 

neighboring polling stations. 
• Economics: Lowering the cost of production for one firm may change the market 

price faced by other firms. 
• Within-subjects experiments across many domains: the possibility that 

treatment effects persist or that treatments are anticipated can be modeled as a kind 
of spillover. 

These examples share some features: 

• An intervention: the vaccine, increased enforcement, election monitoring; 
• An outcome: incidence of disease, crime rates, electoral fraud; and 
• A “network” that links units together: face-to-face social interaction, geographic 

proximity within a city, road distance between polling stations. 

The network is a crucial feature of any spillover analysis. For each unit, it describes the set 
of other units whose treatment assignments “matter.” To take the education example: it may 
matter to me if you treat another student in my classroom, but it probably doesn’t matter if 
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you treat a student in a different city. I’m connected to the other students in my classroom 
but not to students in other cities. 

2. If ignored, spillovers may “bias” 
treatment effect estimates 
If unaddressed, spillovers “bias” standard estimates of treatment effects (e.g., differences-
in-means). “Bias” is in scare quotes because those estimators will return unbiased estimates 
of causal effects, just not the causal effects that most researchers are interested in. 

Imagine an experiment in which there are 50 villages. A treatment (such as a vaccination 
program) is randomly assigned to some villages but not others. Let’s assume that a village 
receives spillovers if another village within a 5km radius is treated. Imagine the outcome is 
some measure of health (such as the prevalence of an infectious disease). If we naively 
compare treated villages to untreated villages, we may not recover an unbiased estimate of 
the direct effect of treating a village. The reason is that each village’s outcome is affected not 
only by whether that village is treated, but also by whether neighboring villages are treated. 

In order to see how spillovers can distort estimated treatment effects, consider the graph 
below: 
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The graph considers a situation in which the true direct effect of treating a village is 1, and 
shows how estimated treatment effects can be higher or lower than 1 depending on the 
direction and size of spillovers as well as the number of villages treated. 

In this case, positive spillovers cause a negative bias and vice-versa. This is because when 
spillovers are positive, the control group mean is inflated, so the difference-in-means is 
smaller than it otherwise would have been.2 The extent of the bias, however, depends on the 
number of villages treated as well as the magnitude of the spillover effect. In this example, 
the more villages are treated, the smaller the bias resulting from spillovers. This is because 
when more villages are treated, both the treatment and control group means are similarly 
inflated by positive spillovers and deflated by negative spillovers. 

Often, evaluators are trying to estimate what would happen if a program were rolled out to 
everyone. Evidence from an RCT that ignores spillover could greatly over or underestimate 
the total effects of the intervention. 

3. Most experimental analyses 
implicitly or explicitly assume that 
there are no spillovers. 
The assumption that there are no spillovers is known as the non-interference 
assumption; it is part of a somewhat more elaborate assumption sometimes referred to as 
the Stable Unit Treatment Value Assumption (or SUTVA) that is usually invoked in 
causal inference. 

What does the non-interference assumption mean? Subjects can only reveal one of two 
“potential outcomes”: either their treated outcome or their untreated outcome. Which of 
these they reveal depends on their own treatment status only. The treatment status of all the 
other subjects in the experiment doesn’t matter at all. 

We can state the non-interference assumption more formally using potential outcomes 

notation: yi(zi,Z)=yi(z'i,Z')yi(zi,Z)=yi(z′i,Z′), if zi=z'izi=z′i, where ZZ and Z'Z′ represent any 

two possible random assignment vectors. In words, this expression states that subject ii is 
unaffected by other subjects’ treatment assignments. 
How reasonable is the non-interference assumption? The answer depends on the domain. 
Every study that finds a statistically significant impact of spillovers is providing evidence 
that the assumption is incorrect in that particular application. Most papers discussing 
spillovers tend to focus on examples in which the non-interference assumption is false. But 
other studies suggest that spillovers are sometimes surprisingly weak. Sinclair, McConnell, 
and Green (2012) for example find no evidence of within-zip code spillovers of experimental 
encouragements to vote, bolstering the non-interference claims made by the dozens of 
previous turnout experiments. 

4. You need some kind of non-
interference assumption whenever 
you try to estimate spillover effects 

https://rawgit.com/egap/methods-guides/master/spillovers/spillovers.html#fn2
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The usual non-interference assumption is very strong: it says that there are no spillover 
effects. When you try to estimate spillovers, you are replacing this strong assumption with a 
(slightly) weaker one. Perhaps you think that spillovers take place in geographic space — the 
treatment status of one location may influence the outcomes of nearby units. Allowing 
spillovers to take place in geographic space requires the assumption that they do not also 
occur in, for example, social space. This assumption would be violated if the treatment 
status of, say, Facebook friends in faraway places affects which potential outcome is 
revealed. To restate this point more generally: When you relax the non-interference 
assumption, you replace it with a new assumption: no unmodeled spillovers. The modeling 
of spillovers itself requires strong, often untestable assumptions about how spillovers can 
and cannot occur. 

Suppose we were to model spillovers in the following way. Every unit has four potential 

outcomes, which we’ll write as Y(Zi,Zj)Y(Zi,Zj), where ZiZi refers to a unit’s own treatment 

assignment, and ZjZj refers to the treatment assignment of neighboring units (i.e., other 

units within a specified radius). Zj=1Zj=1 when any neighboring units are treated 

and Zj=0Zj=0 otherwise. 

• Y00≡Y(Zi=0,Zj=0)Y00≡Y(Zi=0,Zj=0): Pure Control 

• Y10≡Y(Zi=1,Zj=0)Y10≡Y(Zi=1,Zj=0): Directly treated, no spillover 

• Y01≡Y(Zi=0,Zj=1)Y01≡Y(Zi=0,Zj=1): Untreated, with spillover 

• Y11≡Y(Zi=1,Zj=1)Y11≡Y(Zi=1,Zj=1): Directly treated, with spillover 

What assumptions are we invoking here? First, we are stipulating that the treatment 
assignments of non-neighboring units do not alter a unit’s potential outcomes. Second, we 
are modeling spillovers as a binary event: either some neighboring unit is treated, or not — 
we are ignoring the number of neighboring units that are treated, and indeed, their relative 
proximity. 

This potential outcome space is already twice as complex as the one allowed by the 
conventional non-interference assumption. However, it is important to bear in mind that 
this potential outcome space can be incorrect in the sense that it does not accurately reflect 
the underlying social process at work in the experiment. 

5. Spillovers are only indirectly 
“randomly assigned” 
The beauty of randomized experiments is that treatment assignments are directly under the 
control of the researcher. Interestingly in an experiment, spillovers are also randomly 
determined by the treatment assignment – after all, you’re assigning some unit’s neighbor 
to treatment or control on a random basis. The trouble is that the probability that a unit is in 
a spillover condition is no longer directly under the control of the experimenter. Units that 
are close to many other units, for example, might be more likely to be in the spillover 
condition than units that are off on their own. 

Take a look at the graph below of 50 units arrayed in geographic space. The 10 red units 
(both filled and unfilled) were randomly selected for direct treatment and yellow units for 
control. A filled point represents a unit in a spillover condition, whereas an unfilled point 
represent a unit that has no treated neighbors within the 5km radius. Notice that the units 
closer to the center of the graph have a much higher chance of being in a spillover condition 
than do units towards the edges. 
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6. To estimate spillovers you need to 
account for differential probabilities of 
assignment to the spillover 
When we estimate causal effects, we have to take account of the probability with which units 
are assigned to a given treatment condition. Sometimes this is done through matching; 
sometimes it is done using inverse probability weighting (IPW). 

Sometimes, the only practical way to calculate assignment probabilities is through computer 
simulation (though analytic probabilities can be calculated for some designs). For example 
you could conduct 10,000 simulated random assignments and count up how often each unit 
is in each of the four conditions described in the previous section. In R: 

# Define two helper functions 
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complete_ra <- function(N,m){ 

  assign <- ifelse(1:N %in% sample(1:N,m),1,0) 

  return(assign) 

} 

  

get_condition <- function(assign, adjmat){ 

  exposure <-  adjmat %*% assign 

  condition <- rep("00", length(assign)) 

  condition[assign==1 & exposure==0] <- "10" 

  condition[assign==0 & exposure>0] <- "01" 

  condition[assign==1 & exposure>0] <- "11" 

  return(condition) 

} 

  

N <- 50  # total units 

m <- 20  # Number to be treated 

  

# Generate adjacency matrix 

set.seed(343) 

coords <- matrix(rnorm(N*2)*10, ncol = 2) 

distmat <- as.matrix(dist(coords)) 

true_adjmat <- 1 * (distmat<=5) # true radius = 5 

diag(true_adjmat) <-0 

  

# Run simulation 10000 times 

Z_mat <- replicate(10000, complete_ra(N = N, m = m)) 

cond_mat <- apply(Z_mat, 2, get_condition, adjmat=true_adjmat) 

  

# Calculate assignment probabilities 

prob00 <- rowMeans(cond_mat=="00") 

prob01 <- rowMeans(cond_mat=="01") 

prob10 <- rowMeans(cond_mat=="10") 

prob11 <- rowMeans(cond_mat=="11") 

We can display the resulting probabilities plotted below against the number of units within 
the 5km radius. The further from the center a unit is, the higher the probability of not being 
in the spillover condition. 
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We must account for these differential probabilities of assignment using IPW. Below is a 
block of R code that shows how to include IPWs in a regression context. 

# Define helper functions 

get_prob <- function(cond,prob00,prob01,prob10, prob11){ 

  prob <- prob00 

  prob[cond=="10"] <- prob10[cond=="10"] 

  prob[cond=="01"] <- prob01[cond=="01"] 

  prob[cond=="11"] <- prob11[cond=="11"] 

  return(prob) 

} 
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get_Y <- function(cond, Y00, Y01, Y10, Y11){ 

  Y <- Y00 

  Y[cond=="10"] <- Y10[cond=="10"] 

  Y[cond=="01"] <- Y01[cond=="01"] 

  Y[cond=="11"] <- Y11[cond=="11"] 

  return(Y) 

} 

  

# Generate potential outcomes as a function of position 

Y00 <- rnorm(N) 

  

# Treatment Effects 

t10 <- 10   # direct effect 

t01 <- -3   # indirect effect 

t11 <- 5    # direct + indirect 

  

Y01 <- Y00 + t01 

Y10 <- Y00 + t10 

Y11 <- Y00 + t11 

  

# Randomly generate treatment assignment 

assign <- complete_ra(N, m) 

  

# Reveal true conditions 

cond <- get_condition(assign = assign, adjmat = true_adjmat) 

  

# Reveal potential outcomes 

Y <- get_Y(cond = cond, Y00 = Y00, Y01=Y01, Y10=Y10, Y11=Y11) 

  

# calculate weights 

weights <- 1/get_prob(cond=cond, prob00=prob00,prob01=prob01,prob10=prob10,pr

ob11=prob11) 

  

# combine data into a dataframe 

df <- data.frame(Y, cond, weights, prob00, prob01, prob10, prob11) 

  

# conduct estimation comparing the spillover condition to the pure control 
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fit <- lm(Y ~ cond=="01", weights=weights, 

          data = subset(df, prob00 >0 & prob00 <1 & prob01 >0 & prob01 < 1 & 

cond %in% c("00", "01"))) 

There are two very important things to remember when using IPW: 

• Only include units that have a non-zero and non-one probability of being in all 
conditions being compared. The code above only compares the pure control 
condition to the untreated spillover condition (see the subsetting in the lm call). 

• Remember the IPW mantra: units are weighted by the inverse of the probability of 
being in the condition that they are in. 

7. Choosing the wrong interference 
assumption will yield incorrect 
estimates 
You might be tempted to simply construct a model for a particular type of spillover and 
estimate it. But unfortunately, just as spillovers can produce biased estimates of treatment 
effects, incorrectly modeled spillovers can create biased estimates of spillover effects (as 
well as treatment effects). 

To get some intuition for the problem, the simulator below lets you pick an interference 
assumption: the radius beyond which spillovers cannot occur. As in section 4, we assume 
there are only 4 potential outcomes. The three causal effects that interest us are the average 

differences between Y00Y00 and the other three potential outcomes. The tension in the 
simulator is between the true (in principle, unknown) spillover network that generates 
outcomes and the assumed spillover network used for estimation. 
The causal effect estimates are only correct when the spillover assumption is correct. The 
potential outcomes were generated under a true radius of 5km. When any radius other than 
5km is selected, some if not all of the estimates are biased. This simulator underlines a 
discouraging point about spillover analysis: it is generally not possible to know if you’ve got 
the “correct” model of spillovers. Short of doing so, the answers yielded by the model will be 
incorrect. 

Geographic Spillovers 
Estimates of causal effects depend on the assumed spillover structure. In this example, you can choose the radius beyond which 
spillovers are assumed to be zero. Units are in a spillover condition if there is a treated unit within the specified radius. Outcomes 
were generated under a true radius of 5km. 
Spillover Radius 

020302468101214161820  

Choose the magnitude of the true causal effects: 
Direct Effect 

Indirect Effect 
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Direct + Indirect Effect 

 
The table below shows the true causal effects, and the average of the 1000 estimates that would be obtained under the assumed 
radius. The estimates are biased unless the assumed radius is the correct radius (5km). 
 

True Average Estimated Bias 

Direct 2.00 -0.36 2.36 

Indirect -2.00 -0.97 -1.03 

Direct + Indirect -7.00 -5.98 -1.02 

 

Geographic Spillovers 

by Alexander Coppock 

The functions used for estimation are available in the helpers.R tab. 

 show with app 

• helpers.R 

• server.R  

• ui.R 

# server.R 

source("helpers.R") 

http://alexandercoppock.com/
https://egap.shinyapps.io/spillover-app/_w_7db3a624/#helpers_R_code
https://egap.shinyapps.io/spillover-app/_w_7db3a624/#server_R_code
https://egap.shinyapps.io/spillover-app/_w_7db3a624/#ui_R_code
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N <- 50  # total units 

m <- 10  # Number to be treated 

 

# Generate coordinates 

set.seed(343) 

coords <- matrix(rnorm(N*2)*10, ncol = 2) 

 

# Generate distance matrix 

distmat <- as.matrix(dist(coords)) 

 

# Potential outcomes are a function of position 

# We write treatment effects Yij  

Y00 <- rep(0, N) 

 

# Randomly generate treatment assignment 

assign <- complete_ra(N, m) 

 

# True basis for spillovers 

true_radius <- 5 

true_adjmat <- 1 * (distmat<=true_radius) 

diag(true_adjmat) <-0 

 

# Reveal true conditions 

true_cond <- get_condition(assign = assign, adjmat = true_adjmat) 

 

# Generate outcomes under all random assignments (using true spillover radius) 

Z_mat <- replicate(1000, complete_ra(N,m)) 

true_cond_mat <- apply(Z_mat, 2, get_condition, adjmat=true_adjmat) 

 

cols <- c("#E7C545","#948E45","#AE3D00",   "#310708") 

 

shinyServer( 

  function(input, output) { 
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    estimates_fun <- reactive({ 

       

      # Treatment Effects  

      t10 <- input$direct   # direct effect 

      t01 <- input$indirect   # indirect effect 

      t11 <- input$directplusindirect    # direct + indirect 

       

      Y01 <- Y00 + t01 

      Y10 <- Y00 + t10 

      Y11 <- Y00 + t11 

       

      # Generate observed outcomes 

      Y <- get_Y(cond = true_cond, Y00 = Y00, Y01=Y01, Y10=Y10, Y11=Y11) 

      Y_mat <- apply(true_cond_mat, 2, FUN = get_Y, Y00 = Y00, Y01=Y01, Y10=Y10, Y1
1=Y11) 

       

      # Radius for spillover 

      radius <- input$radius 

       

      # Generate numeric adjacency matrix 

      adjmat <-  1 * (distmat<=radius) 

      diag(adjmat) <- 0 

       

      cond <- get_condition(assign=assign, adjmat=adjmat) 

       

      # Generate probabilies of assignment 

      cond_mat <- apply(Z_mat, 2, get_condition, adjmat=adjmat) 

      prob00 <- rowMeans(cond_mat=="00") 

      prob01 <- rowMeans(cond_mat=="01") 

      prob10 <- rowMeans(cond_mat=="10") 

      prob11 <- rowMeans(cond_mat=="11") 

       

      # Generate probabilities that units are in the condition that they are in 

      prob <- get_prob(cond = cond, prob00=prob00,prob01=prob01,prob10=prob10, prob
11=prob11) 
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      prob_mat <- apply(X = cond_mat, 2, FUN = get_prob, prob00=prob00,prob01=prob0
1,prob10=prob10, prob11=prob11) 

       

      # Estimate Treatment effects 

      estimates <- mapply(FUN = estimator_ipw, split(Y_mat, col(Y_mat)), split(cond
_mat, col(cond_mat)), split(prob_mat, col(prob_mat)), MoreArgs = list(prob00=prob00
,prob01=prob01,prob10=prob10, prob11=prob11)) 

      estimates[is.nan(estimates)] <-NA 

      means <- apply(estimates, 1, mean, na.rm=TRUE) 

      means <- means[c(2,1,3)] 

      list(means=means) 

    }) 

     

    output$radiusmap <- renderPlot({     

      # Radius for spillover 

      radius <- input$radius 

      adjmat <-  1 * (distmat<=radius) 

      diag(adjmat) <- 0 

       

      t10 <- input$direct   # direct effect 

      t01 <- input$indirect   # indirect effect 

      t11 <- input$directplusindirect    # direct + indirect 

      cond <- get_condition(assign=assign, adjmat=adjmat) 

       

      # plot exposure 

      exposure_cols <-ifelse(assign==1, cols[3], NA) 

      treat_cols <-ifelse(assign==1, cols[3], cols[1]) 

      exposure_pchs <- ifelse(cond %in% c("01", "11"), 19, 1) 

       

      plot(coords,type="n", xlim=c(-25,25), ylim= c(-40,25),xlab="",ylab="",main=pa
ste0("Geographic Spillovers with Radius = ", radius, "km")) 

      symbols(coords,circles=rep(radius,N),inches=FALSE,fg=exposure_cols, add=TRUE) 

      points(coords,cex=1.5, pch=exposure_pchs, col=treat_cols) 

      legend("bottom", legend = c("Control, No Spill","Treated, No Spill", "Control
, Spill", "Treated, Spill"),ncol = 2, 

             col=c(cols[1], cols[3], cols[1], cols[3]), pch=c(1,1,19,19))      

    }) 
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    output$esttable <- renderTable({ 

      t10 <- input$direct   # direct effect 

      t01 <- input$indirect   # indirect effect 

      t11 <- input$directplusindirect    # direct + indirect 

      results <- estimates_fun() 

      resultstable <- cbind(c(t10, t01, t11), results$means, c(t10, t01,t11) - resu
lts$means) 

      rownames(resultstable) <- c( "Direct", "Indirect", "Direct + Indirect") 

      colnames(resultstable) <- c("True", "Average Estimated", "Bias") 

      resultstable 

    }) 

}) 

 

 

Applied researchers often favor two responses to the “unknowability” of the spillover 
process. First, they specify “theoretically-driven” models of spillover. Usually, this involves 
the careful application of qualitative information from the experimental context. Second, 
researchers conduct robustness checks: they present estimates under a series of spillover 
assumptions, for example the estimates under increasing radii. 

8. Sometimes you can avoid spillovers 
with “buffer rows” 
One approach to addressing the problem of spillovers is to ensure that other units’ 
treatment assignments cannot interfere with potential outcomes, by including “buffer rows” 
between experimental units. The buffer row analogy comes from agricultural studies in 
which experimental crop rows were physically separated by non-experimental rows that 
presumably prevented interference due to local changes in soil nitrogen content, insect 
behavior, or water usage. 

The analogous design choice in our villages experiment would be to sample a set of 50 
experimental villages from a larger set of villages, such that all 50 experimental villages 
were a healthy distance away from each other – say, separated by a minimum of 75km. Of 
course, we still must make a non-interference assumption along the lines of: “No spillovers 
between villages that are 75km or more apart.” This assumption also rules out spillovers 
that might take place over non-geographic networks, such as an information network via 
radio, telephone, or internet. 

The main advantage of buffer-row-inspired design is the massive reduction in complexity. 
You can get a clean estimate of a direct treatment effect using standard analytic techniques, 
without needing to posit complicated assumptions about the possible avenues for spillover. 

The main disadvantage of this design, however, is that by design you cannot estimate 
natural spillover patterns — which could be critical in understanding normal social 
processes. (Note: if you do do a buffer design, don’t ignore the buffers themselves — data on 
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these can give you a better handle on spillover effects even though they are never going to 
receive treatment directly.) 

9. There are other design-based 
approaches for detecting spillover 
effects. 
Some researchers employ a “multilevel” design for exploring spillover effects. The “levels” of 
the experiment correspond to the spillover network. For example, Sinclair, McConnell, and 
Green (2012) employ a multilevel design to investigate the possible spillover effects of an 
encouragement to vote. The levels in their experiment are the neighborhood (nine-digit ZIP 
code), the household, and the individual. The authors’ non-interference assumption is that 
the treatment assignments of units in other neighborhoods do not matter. What determines 
which potential outcome is revealed is a combination of three things: 

• An individual’s own treatment assignment 
• The treatment assignment of his or her housemate 
• The treatment assignment of others in the neighborhood 

Following a relatively complex randomization scheme, the authors assigned treatments so 
as to create variation in all three levels. 

What are the advantages of this design? First, it requires the researcher to stipulate a non-
interference assumption ex ante, so there can be no question of fiddling around with 
interference assumptions until a statistically significant result pops up. Second, it assigns 
individuals to treatment (including spillover) conditions with known probabilities, so IPW 
can proceed without having to resort to the simulation method discussed above. 

What are the disadvantages? As ever, the difficulty is that the non-interference assumption 
used in the design stage could be wrong. Perhaps there are significant spillovers across 
neighborhoods – after all, neighborhood boundaries as described by nine-digit ZIP codes 
are arbitrary; it could be that the best of friends happen to straddle these boundaries. Or it 
could be that the spillover network is only indirectly governed by geography. Workplace 
social ties may be the true means by which the treatment assignment of one unit influences 
the outcome expressed by others. Of course, nothing about a multilevel randomization 
scheme prevents the exploration of such alternative spillover structures. 

10. Even if a treatment is binary, 
spillovers might not be. The right 
model might require dealing with 
“dosage” 
We’ve explored a non-parametric approach to estimating spillover effects. (See Aronow and 
Samii 2015 for a fuller treatment of this method as well as a conservative variance estimator 
in the presence of spillovers.) Units were randomly assigned to one of four conditions with a 
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complex (but knowable) probability. Our estimates of causal effects were calculated as 
differences in weighted average outcomes between the treatment conditions. This approach 
has the advantage of making IPW estimation easy – simply weight each observation by the 
inverse of the probability of it being in the condition that it’s in. 

But what about “dosage”? Perhaps in fact spillovers work as a decreasing function of the 
distance to every other treated unit or in some other more complex way. The spillover is 
then a continuous variable that describes the “dosage” of exposure to spillovers. The non-
parametric IPW approach would require us to chop up the continuous variable in to bins 
and then calculate average outcomes according to the bin. The IPW estimator quickly 
becomes quite noisy, as fewer and fewer units occupy each bin. 

Bowers, Fredrickson, and Panagopoulos (2013) propose a framework that can accommodate 
any causal model that maps treatment assignments into potential outcomes. The potential 
outcomes can be in discrete categories (as we’ve been assuming for most of this guide) or a 
continuous function of the dosage of spillovers. 

A schematic sketch of their method is as follows. Suppose the causal model has two 

parameters: β1β1, the direct treatment effect and β2β2, the indirect effect of a single unit of 

spillover dosage. A joint test of the hypothesis that β1=β2=0β1=β2=0 is equivalent to a test 
of the sharp null hypothesis of no effect. Such a test yields a p-value — the probability that 

the observed data were generated according to the causal model in which β1=β2=0β1=β2=0. 

But we aren’t restricted to only obtaining p-values for the hypothesis that β1=β2=0β1=β2=0. 
Those parameters could take on any values, and we could associate a p-value with any 
hypothesized pair of values. The essence of their proposed estimation method is to pick the 
pair that generates the highest p-value by searching through the set of plausible pairs. 
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1. Originating author: Alex Coppock, 31 Jul 2014. Minor revisions: Don Green and 
Winston Lin, 20 July 2016. The guide is a live document and subject to updating by 
EGAP members at any time; contributors listed are not responsible for subsequent 

edits.↩ 

2. Note though, it is generally very difficult to guess the direction of the bias that would 
be induced by spillover. Claims like, “spillover would only make our treatment effects 
appear stronger” usually depend on assumptions of treatment (and spillover) effect 

homogeneity.↩ 
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