Missing Values and Anomalies

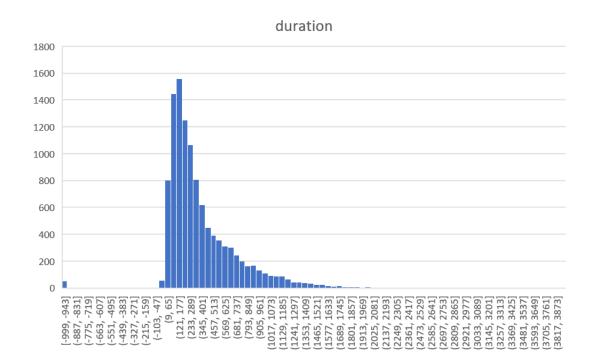
Detecting missing values

- Missing values come in many forms, e.g. blank, "n/a", "-99999", ?
- Missing values of categorical variables can be fairly easily detected, e.g. by means of a frequency table of possible values

marital	Frequency
married	6327
single	3507
divorced	1292
NA	19
	18

Detecting missing values

• Missing values of numerical variables can be detected by a histogram



... or by detecting inliers.

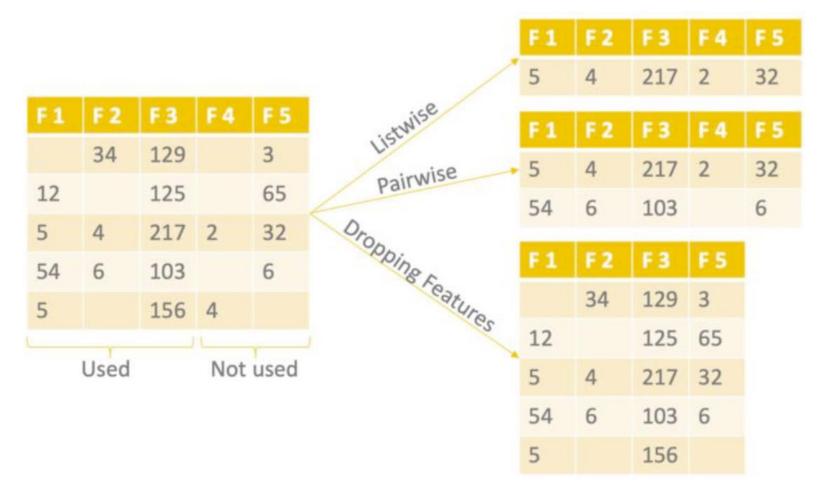
Types of missing values

- Missing completely at random (MCAR): the probability of an instance being missing does not depend on known values nor the missing value itself.
- Missing at random (MAR): The probability of an instance being missing may depend on known values (of other variables), but not on the variable having missing values.
- Missing not at random (MNAR): The probability of an instance being missing depends on other variables which also have missing values, or...

... the probability of missingness depends on the very variable itself.

Imputing missing values

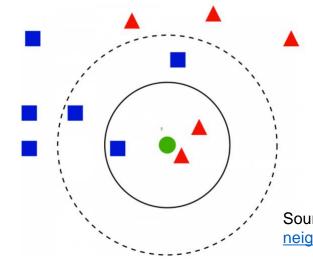
• Deletion methods: listwise, pairwise, and dropping features



Source: https://www.kdnuggets.com/2020/09/missing-value-imputation-review.html

Imputing missing values

- Single imputation
 - Fixed value
 - Minimum or maximum value (or most frequent value)
 - Mean or median or moving average (or most frequent value)
 - Previous or next value (only for time sequence or ordered data)
 - K-nearest neighbours
 - Regression



Multiple imputation

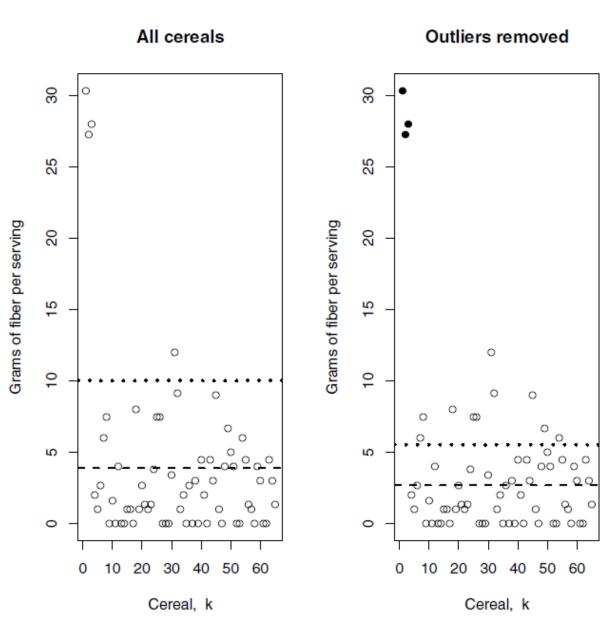
- Creates multiple replacements for each missing value, i.e. multiple versions of the complete dataset.
- Multiple Imputation by Chained Equations
 - Step 1: Make a simple imputation (e.g. mean) for all missing values in the dataset
 - Step 2: Set missing values in a variable 'A' back to missing.
 - Step 3: Train a model to predict missing values in 'A' using available values of A as dependent and other variables in the dataset as independent.
 - Step 4: Predict missing values in 'A' using the trained model in Step 3.
 - Step 5: Repeat Steps 2-4 for all other variables with missing values
 - Step 6: Repeat Steps 2-5 for a number of cycles until convergence (reportedly 10 cycles)
 - Step 7: Repeat Steps 1-6 multiple times with different random number settings to create different versions of the complete/imputed dataset.

Multiple imputation

age	job	marital	education	default	balance	housing	loan	contact	duration
59	admin.	married	secondary	no		yes	no	unknown	1042
56	admin.	married	secondary	no		no	no	unknown	1467
41	technician	married	secondary	no		yes	no	unknown	1389
55	services		secondary	no		yes	no	unknown	579
54	admin.		tertiary	no	184	no	no	unknown	673
42	management		tertiary	no	0	yes	yes	unknown	562
56	management		tertiary	no	830	yes	yes	unknown	1201
60	retired		secondary	no	545	yes	no	unknown	1030
37	technician	married	secondary	no	1	yes	no	unknown	608
28	services	single	secondary	no	5090	yes	no	unknown	1297
38	admin.	single	secondary	no	100	yes	no	unknown	786
30	blue-collar	married	secondary	no	309	yes	no	unknown	1574
29	management	married	tertiary	no	199	yes	yes	unknown	1689
46	blue-collar	single	tertiary	no	460	yes	no	unknown	1102
31	technician	single	tertiary	no	703	yes	no	unknown	943
35	management	divorced	tertiary	no	3837	yes	no	unknown	1084
32	blue-collar	single	primary	no	611	yes	no	unknown	541
49	services	married	secondary	no	-8	yes	no	unknown	1119
41	admin.	married	secondary	no	55	yes	no	unknown	1120
49	admin.	divorced	secondary	no	168	yes	yes	unknown	513
28	admin.	divorced	secondary	no	785	yes	no	unknown	442
43	management	single	tertiary	no	2067	yes	no	unknown	756
43	management	divorced	tertiary	no	388	yes	no	unknown	2087
43	blue-collar	married	primary	no	-192		no	unknown	1120

- Outlier "an observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data."(V. Barnett and T. Lewis. *Outliers in Statistical Data*. Wiley, 2nd edition, 1984)
- Outliers significantly change the characteristics of a dataset.
- They can be because of *gross data errors* or from special cases.
- Example. Grams of fibre (and potassium

 in later slides) in one standard portion of
 each of 65 cereal brands. Further info
 <u>here</u>.

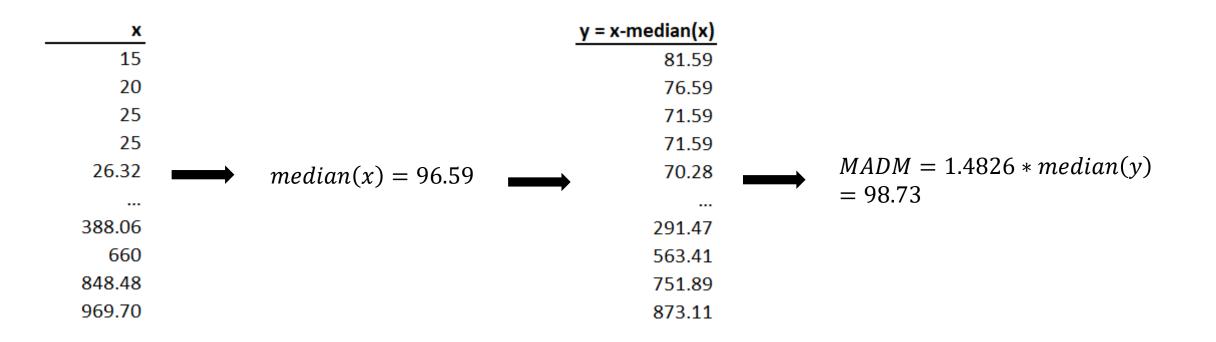


- Three-sigma identifier
 - Typical value: mean value \bar{x}
 - Data spread: standard deviation σ
 - Bounds: x_k considered outlier if $|x_k \bar{x}| > 3\sigma$
- Note that σ is *inflated* by outliers.
- Larger outlier values -> larger σ -> larger the bound values -> less effective in identifying unusual values
- We need a different way to measure typical value and the spread so that they are less sensitive to outliers.



Cereal, k

- The Hampel identifier
 - Typical value: median
 - Data spread: median absolute deviation from the median (MADM) $MADM = 1.4826 * median(|x_k - median(x)|)$
 - Bounds: x_k considered outlier if $|x_k median| > 3MADM$

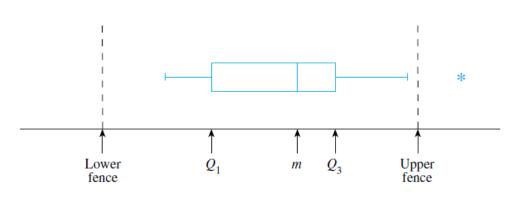


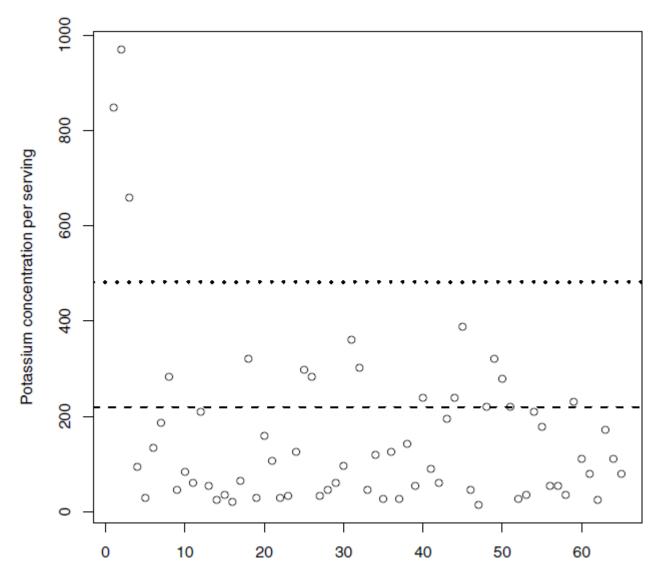
• The Hampel identifier



Cereal, k

- The boxplot identifier
 - A graphical tool "expressly designed" for isolating outliers from a sample.
 - Bounds: x_k considered outlier if $x_k > Q_3 + 1.5IQR$ or $x_k < Q_1 1.5IQR$





Cereal, k

- The three procedures described above may identify different sets of outliers.
- A suggested strategy:
 - Apply all three procedures and compare (i) the number and the value of outliers identified by each procedure, and (ii) the range of the data values not declared as outliers.
 - Apply application-specific assessments, i.e. does the nominal range (excluded outliers) make sense? Do outliers seem extreme enough to be excluded?
 - Visualise the data either with different colours for nominal values and for outliers, or with indication of outlier detection thresholds.
- Identifying outliers can be a mathematical procedure interpreting the outliers is NOT.
- Outliers are not necessarily bad data that should be removed/rejected they simply need further investigation.

Identifying inliers

- "A data value that lies in the interior of a statistical distribution and is in error" (D. DesJardins. Paper 169: Outliers, inliers and just plain liars new eda+ techniques for understanding data. In *Proceedings SAS User's Group International Conference*, SUG126. Cary, NC, USA, 2001)
- Inliers often represent in the form of *similar* values repeating unusually frequently.
- Example. Dataset "Chile" in package "car" available in R (more info <u>here</u>).

We wish to find a way to conclude that values such as -1.29617, which appears 201 times, as *inliers*. In other words, we wish to conclude that 201 is an outlier among the values in Frequency.

	Chile\$statusquo	Frequency
1	-1.80301	1
2	-1.74401	1
19	-1.29617	201
20	-1.29293	2
21	-1.28924	1
22	-1.28897	1
23	-1.27876	3
24	-1.27556	1
25	-1.2727	5
	•••	
2092	2.04859	1
2093	NA	17

Identifying inliers

Because the majority of numerical values in Chile\$statusquo appears only *once*,

- the majority of values in Frequency is 1, median of Frequency is 1, MADM of Frequency is 0 => we cannot use Hampel identifier to detect inliers.
- Quartiles of Frequency are as below

0% 25% 50% 75% 100% 1 1 1 1 201

 Both Hampel and boxplot procedures would declare that all data points in Frequency are outliers!

cal values in once,				Chile\$	Status	quo	Frequ	ency		
		IN	-	1		-1.80	301		1	
				2		-1.74	401		1	
reque	ency i	s 1.								
MAD		• • • •		19		-1.29	617		201	
			~ I	20		-1.29	293		2	
not us	se Ha	amp	el	21		-1.28	924		1	
				22		-1.28	897		1	
o as h	مامس			23		-1.27	876		3	
e as below			24		-1.27	556		1		
0%				25		-1.2	727		5	
)1										
				2092		2.04	859		1	
procedures				2093			NA		17	
a point	ts in					_				
Eneque	an cu					ļ				
Freque 1	2	3	4	5	6	8	9	13	17	
1955	72	22	19	8	5	4	1	1	2	

Identifying inliers

- Applying the three-sigma procedure to identify outliers in Frequency.
 - Mean $\bar{x} = 1.29$
 - Standard deviation $\sigma = 4.67$
 - A value x_k in Frequency is considered outlier if $|x_k \bar{x}| > 3\sigma$ or $x_k > 15.3$

	Chile\$statusquo	Frequency
19	-1.29617	201
39	-1.25795	21
61	-1.21834	18
137	-1.14049	17
2074	1.5877	61
2093	NA	17

 Similar to outliers, inliers are not necessarily bad data and need to be rejected/removed – they simply need further investigation.

References and further readings

- <u>Missing data imputation</u>
- <u>Tutorial: Introduction to Missing Data Imputation</u>
- <u>Review: A gentle introduction to imputation of missing values</u>
- <u>Missing value imputation a review</u>
- Multiple imputation by chained equations: what is it and how does it work?