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Resampling

- Repeatedly and randomly drawing subsets of data from a sample
- Refitting a model (e.g. OLS regression) on these subsets of data reveal
information unknown if fitted the model only once, e.g. variability of the fitted
model
- Computationally expensive
- Two common resampling methods
- Cross-validation: model selection and model evaluation
- bootstrapping: evaluating the variability of an estimate



Cross-validation

- Training error - a measure of the goodness of fit of a model (e.g. OLS
regression) to the data used to train the model

- Test error - a measure of how accurate the model is in predicting the response
of a new observation

- Mean squared error

MSE = 3 (- f(20)?
=1

- Cross-validation - a cost effective method that allows for the test error be
estimated independently of the training error rate.




The validation set approach

- Randomly split the original data into two, a training set and a test set.
- Fit the OLS model on the training set and predict the responses in the

validation set
- Calculate the test MSE (MSE from using the model on the test set)
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The validation set approach

Pros: conceptually simple and easy to
implement
Cons:

Highly variable (in multiple runs)
Tend to overestimate the test error
(because we used only roughly
half of the original dataset for
training)

mean squared error - validation set approach

MSE vs degree of polynomial - validation set approach
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Leave one out cross validation (LOOCV)

- Use only 1 observation for testing, and fit the OLS regression on the
remaining of the original data

- Repeat the procedure n times so that each observation is used for testing
once.

- Calculate the test MSE 123
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Leave one out cross validation (LOOCV)

Pros:

Unbiased estimate of the test error
(because we used almost all data points
for training)

Very stable (identical test MSE from
multiple runs)!

Cons:

Very time consuming (especially when n
is large and/or fitting a complex model)

average mean squared error - LOOC I
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average MSE vs degree of polynomial - LOOCV
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K-fold cross validation

- Randomly divide the original data into k groups (folds)

- Train the model on k-1 folds, use the last fold for testing

- Repeat the procedure k times, so that each fold is used for testing once
- (Repeat the above 3 steps multiple times)

- Calculate the test MSE
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K-fold cross validation

- Pros:

Less computationally demanding than
LOOCV

- Cons

Test error tend to be more biased
compared to LOOCV (but much less so
compared to validation set approach)

average mean squared error - 5-fold CV

average MSE vs degree of polynomial - 5-fold CV
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CV for model evaluation vs model selection

average MSE vs degree of polynomial - LOOCV average MSE vs degree of polynomial - 5-fold CV MSE vs degree of poly ial - validation set app h
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Model selection chooses the model with smallest test MSE => LOOCYV (being the
most stable) allows for the unambiguous choice.




CV for model evaluation vs model selection

Model evaluation estimates the expected range of error in real life applications

- LOOCYV: least biased error estimate but with largest variance
- Leave one out: most biased error estimate but with smallest variance (only 1
value of the test error)
- K-fold CV: a balance between bias and variance of the error estimate
MAD distributions
2-fold: average MAD 15.288, stdev MAD ©.896
5-fold: average MAD 15.028, stdev MAD 1.025

10-fold: average MAD 15.085, stdev MAD 1.219
LOO: average MAD 15.079, stdev MAD 12.040

Applying the empirical rule:

2-fold: CV 95pc confidence interval of MAD is [13.497, 17.079]

5-fold: CV 95pc confidence interval of MAD is [12.978, 17.079]
Test error estimate for the regression model mpg ~ 10-fold: CV 95pc confidence interval of MAD is [12.647, 17.523]

horsepower + horsepower”2 by different CV strategies LOOCV: 95pc confidence interval of MAD is [-9.001, 39.160]




Cross validation for time series data

Must preserve the chronological order of the data...
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https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9



https://medium.com/@soumyachess1496/cross-validation-in-time-series-566ae4981ce4
https://towardsdatascience.com/time-series-nested-cross-validation-76adba623eb9

Exercises

- Estimate test MAD for the OLS regression model Sales ¥ TV + Radio using
different CV strategies



