

FULBRIGHT SCHOOL OF PUBLIC POLICY AND MANAGEMENT

Technology and Innovation

Development Policy Summer 2023

Japan's technology policy as a developing country

- Japan opened up to the world with the Meiji Restoration in 1868
- Imports of foreign technology and training for engineers to use it in local firms.
- 1870s and 1880s government set up businesses in mining, shipbuilding, machinery and textiles
- Motivated by need to build military to counter Russia and imperial powers in China
- Ban on FDI 1950s force foreign companies to sell technology to Japanese firms
- Automobiles and electronics: Reverse engineering and licensing technology

Toyota AA, first production car in 1936

What is innovation?

- Adoption of new or significantly improved product (good or service)
- A new or improved or process or marketing method
- A new organizational structure or business practices, workplace organization or external relations
- Creating, adopting, adapting technologies
- Upgrading technological capacity with the firm
- Imitating or importing existing technologies
- Adapting existing products and production methods to the needs of local producers and customers

Technology, innovation and development

- Large-scale innovation is costly and depends on prior innovations (path dependent) and therefore Innovation is highly concentrated in rich countries, linked to large, global firms.
- Adaptation of technology does not necessarily coincide with invention:
 - Small Nordic countries have not produced many technological breakthroughs, but they
 have become competitive through efficient diffusion of new ideas.
 - China now a leader in renewable energy although these technologies were invented elsewhere.
- Innovations are not all the same:
 - some require less up-front investment or previous experience/expertise
 - may spread more rapidly in developing countries.
- Workers moving between firms is a source of innovation
 - Skilled workers from FDI firms can be a source of innovation for domestic firms
 - Agglomeration effects when firms in one sector/activity congregate in one location

Innovation and fragementation of production

- Suppliers and assemblers used to be located near each other, and often connected through ownership and movement of staff
- Manufacturing is now fragmented:
 - Digitization: sharing of precise information in real time in automated processes
 - Trade liberalization: lowering of tariffs and other trade costs
 - Containerized shipping: lowered costs of moving goods long distances

Automobile assembly: 30,000 parts

- OEM: designs, assembles, markets
- Tier 1: Supplies directly to OEM, close relationships
- Tier 2: Specialists in materials and machinery required by Tier 1
- Tier 3: Producers of metal, plastic and leather

Why is fragmentation of production profitable?

- Research and development, design, management of supply chain retained by system integrator firms
 - System integrators pressure suppliers to continually improve quality and reduce costs
 - Cascade effect: Tier 1 suppliers, also huge companies, pressure their supplier for lower costs and better quality
- Labor-intensive processes sent to countries with lowest wages
- Companies specialize in specific components or processes: develop capabilities and realize economies of scale
 - TSMC specializes in microchip fabrication (pure-play foundry): they don't design chips, but no one makes chips better or cheaper
 - Wipro: Indian software and project management company that write much of the code that is used in our cars, online banking and appliances.

Barriers to innovation in developing countries

- Factors external to firms
 - Political instability, corruption, criminality
 - Monopoly or other barriers to entry of new firms the reduce competition
 - Absent or fragmented National Innovation System
- Factors internal to the firm
 - Domestic firms more likely to invest in R&D than foreign firms
 - Level of education, experience of workers can hold back innovation
 - Access to finance
 - Access to knowledge networks

National Innovation Systems

- Christopher Freeman: Innovation in Japan arises from interactions between organizations and networks.
- Technological capacity as the crucial factor in national competitiveness: Exports depend on innovation, not just prices
- Three facets of NIS:
 - Science policy: Production of scientific knowledge for the economy, security, health and environment.
 - Technology policy: Focus on strategic technologies with impact on economic and social objectives, for example energy transition
 - Innovation policy: Diffusion of science and technology through society, creating networks, feedback loops, for example national research institutions, universities, professional associations, business associations, specialized financial institutions.

Thailand

- Science and Technology Strategic Plan for 2004–2013 for first time includes firms.
- Recognized role of innovation in competitiveness.
- Several industrial development banks established: Industrial Finance Corporation of Thailand (IFCT), SME Bank, Small Industry Credit Guarantee Corporation (SICGC) and Innovation Development Fund (IDF).
- Cluster strategy to encourage local firms to collaborate

Policy objective	Instrument
Increase technological capacity of Thai firms	R&D tax incentives; Soft loans for R&D investments; Industrial Technology Assistance Program; Clusters; Regional Science parks and incubators
Increase number and quality of researchers	Creation of excellence centers; R&D tax incentives for training
Strengthen local initiatives	The Village Fund; The People's Bank
Upgrade science and technology management system	Mobility of staff between policy agencies

- Larger, more advanced firms benefit from financial support and networking, but weaker firms cannot participate
- Smaller, less capable firms rely primarily on testing facilities and quality control from government
- Still heavily biased to science and technology rather than adaptation and implementation
 - Needs more emphasis on Learning by Doing
 - Networking above the local level
 - More informal training with suppliers and users rather than rely solely on university-based training

Innovation is not the same as invention

- Patents in frontier technologies dominated by US and China
- China is top in R&D spend in these technologies, US second, ROK third, Vietnam 66th
- R&D spending is not the objective, it is a means
 - The goal is innovation not R&D or invention
 - Invention is creating something new, innovation is making something usable and better
 - Innovation is measured in exports, not R&D

Share of patents in frontier technologies, 2018 (UNCTAD)

Four stages of innovation

- Invention
- Design
- Second generation product and component innovation
- Production and assembly

Stage 1: Invention—Israel

- Office of the Chief Scientist created in 1973 but did not gain traction until 1980s with small investments in high tech products
- Yozma (1992): Invested \$8 million in 10 VC funds that had to find at least \$12 million in private funds, at least one local and one foreign
- MAGNET (1992): Created consortia to develop generic technologies, share IP in the group and sell to other Israeli companies.
- Israel became the home of multinational companies R&D centers (for example, Amazon's AI research center)
 - Creates good jobs for high-skilled Israelis but has starved local companies for talent
 - Stage 1 innovation isn't the best stage for economic growth and equality

Stage 2: Design, prototype development and production engineering – IDEO

- Designers of the first Apple Mouse and now designing for a wide range of industries and public sector institutions
- Includes training companies how to use the designs in marketable products (but not design the manufacturing process, which is stage 3)
- Similar Stage 2 design companies exist in every industry from designer footwear to aircraft

 Combine specialized design skills with wide network of manufacturing firms, often centered on a geographic production hub Stage 3: Second generation product and component innovation – United Microelectronics Corporation, Taiwan

- Industrial Technology Research Institute established 1973 from merger of three public sector labs to take on the riskiest research (least likely to pay off) and give it to private companies
- Bought old semiconductor technology from RCA in the US
- Electric Research and Service Organization created within ITRI: perfected chip fabrication skills
- UMC was established as a private company (with government support) by ERSO scientists – no private company would take the risk
- ITRI focuses on R&D, private companies focus on manufacturing processes and final product development

Stage 4: Production and assembly -- Shenzhen

- World leader in manufacturing: mobile phones, computers, electric vehicles, telecommunications equipment etc
- Agglomeration effects: concentration of production created public goods in knowledge, capabilities, labor force skills
- Local companies started making bootleg phones with local parts, which eventually become large local companies with original designs
- Role of government:
 - Land and facilities
 - Access to labor (migration permits, recruitment of highly skilled personnel)
 - R&D: supported linkages with provincial universities, set up labs shared with companies

- Intellectual property rights intended to increase the returns to innovation by providing limited protection for commercially viable ideas
- Coase theorem: If property rights are not well defined the economic outcome will be suboptimal.
- Strong IPR written into laws and trade agreement, given inventors monopoly rights over innovation.
 - But is monopoly over intellectual property really more efficient?
 - This slows down global economic growth and is bad for income equality
 - Protection for patents and trademarks is a barrier to entry and slows down technological learning.

Patents and trademarks

Source: World Intellectual Property Organization

Trade-Related Intellectual Property Rights (TRIPS)

- TRIPS agreements protect the incumbents (advanced countries) at the expense of developing countries
- Expected to increase trade because exporters would have less fear of imitation
- But trade volumes fell because firms behaved monopolistically (reduce supply and increase price)
- TRIPS provisions have reduced policy space for developing countries to design their own IPR systems
- Particularly damaging in health and pharmaceutical industries.
- Developing countries should tax IPR rents accrued by FDI firms.

Policy implications

- The pace of technological change is rapid and developing countries need policies to promote innovation.
- Innovation is not just about creating Silicon Valleys that is just one of four stages of innovation
- Countries and regions need to identify the stage of innovation that fits with their comparative advantage
- Government has an important role to play at every stage of innovation: US government providing Intel with \$50 in subsidies to bring chip foundries to Arizona and Oregon.
- Intellectual property rights can be an obstacle to technological catch-up

Discussion questions

- 1. Are "inclusive institutions" necessary for rapid growth? Why or why not?
- 2. Do the World Bank's governance indicators explain differences in growth and development outcomes in Southeast Asia