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Review

• Impact evaluation assesses impact of program on outcome(s)

• Thus, causal inference is central focus of impact evaluation

– Did program, and program alone, lead to Δ (change) in 
outcome?

• Correlation ≠ causation warning doesn’t satisfy policy makers

– Seek rationale for decisions: If we do X, will we get Y?

• Causality can be viewed as problem of counterfactual

• Evaluators’ main challenge: determine what counterfactual 
state of world looks like → comparison groups

• Must avoid common pitfalls of invalid comparison groups

• Numerous statistical techniques, but shoe leather also key
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Counterfactuals
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Causation and Counterfactuals
• Historically, causation defined in terms of observable 

phenomena
• e.g., regularity models of Hume (1751) and Mill (1843)

• Now increasingly unified around counterfactual as causality
• Rubin (1974): “Causes are those things that could be 

treatments in hypothetical experiments.”
• Involves subjunctive conditional statements

• “If Maria hadn’t received the stipend, she wouldn’t be in 
college”

• Impact is difference in outcomes with program and without 
program, for same individual at same time

• Counterfactual → rule out all outside factors that explain 
outcome

• But impossible to measure same person in two states of world
4



Causation and Counterfactuals 
(Potential Outcomes Framework)
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Causation and Counterfactuals 
(Potential Outcomes Framework)
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Causation and Counterfactuals 
(The Missing Data Problem)

Fundamental problem of causal inference
Can never observe both Y1i and Y0i

So, can never know causal effect with certainty
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Treatment and Comparison Groups

Evaluator’s main challenge: determine what 
counterfactual state of world looks like
• Easy to estimate outcome under treatment 

(Y|Di=1), not (Y|Di=0) for program participants
• Ideally find perfect clone of program recipient, w/ 
Di=0

• If you don’t have clones, try to create comparison 
groups.
• i.e. substitute randomization and sample size 

for perfect clones.
• Idea that comparison groups, if valid, estimate 

counterfactual
• But invalid comparison groups usually lead to 

biased estimates

8



Comparison Groups

• Key to successful program evaluation: estimate counterfactual by

• finding valid comparison groups

• Treatment & comparison groups need to be same in 3 ways:
1. Balanced: Groups identical in absence of program (on average). 

2. Parallel Effects: Groups react to program in same way. 

3. No Contamination: Groups not differentially exposed to other interventions  during 
evaluation period.  

• Two strategies often used to develop good comparative group
1. Create comparison group through statistical design

2. Modify program targeting to erase differences that would have existed between 
treatment & control
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“Counterfeit” Counterfactuals
Beware of invalid comparison 
groups unlikely to provide 
unbiased estimates of 
counterfactuals

• Two methods particularly likely 
to give counterfeit 
counterfactual:

1. Comparing outcomes of 
participants before & after program

2. Compare outcomes of those with & 
without program

• If comparison group invalid, 
then estimates of program effect 
mixed in with estimates of other 
differences between groups. 10



Counterfeit Counterfactual 1: 
Comparing outcomes of participants 

before & after program
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Type 1: Counterfeit 
Counterfactual

• “Reflexive method” tracks Δ 
in outcome of participants 
over time

• Assumes w/out program, 
outcome would be same as 
pre-program

• Rarely holds, so poor 
estimate of counterfactual

• May under or overestimate 
impact

• Can control for some factors 
that affect outcome, but 
unobservables remain

• Helps show program 
objectives met, but can’t 
attribute Δ to project
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Type 1: Counterfeit Counterfactual 
(Fertilizer Yield Program)

• Fertilizer program targets 
poor region (A) of 
country

• To receive fertilizer, 
farmers enroll at local 
office

• Starts in 2010; ends in 
2011

• We observe decrease in 
yields among recipients 
during program

• Did program fail?

– No, there was a 
national drought.

– Failure of reflexive 
comparison
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Type 1: Counterfeit Counterfactual 
(Health Insurance Program)

• How much did health expenditures fall for poor w/ insurance subsidy? 
If $9, then donors will expand nationally

• Find statistically significant difference before/after using reflexive method
But not $9. Should program be expanded?

• Now control for various other factors. Should program be expanded?
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Counterfeit Counterfactual 2: 
Compare outcomes of those with & 

without program
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Type 2: Counterfeit 
Counterfactual

Another method: compare 
outcomes of those with & 
without program

• Often poor estimate of 
counterfactual due to 
selection bias

• Programs are targeted, so 
intended differences by 
design

• Self-selection another key 
issue, as participation is 
typically voluntary

• Treatment & comparison 
groups vary, in both 
observable & unobservable 
ways
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Type 2: Counterfeit Counterfactual 
(Fertilizer Yield Program)

• Compare recipients to farmers in B

• Recipients decline > region B 
farmers. 
– Negative program impact?

• Maybe just program placement 
– Better soil or irrigation in B

• What if decline < neighbors?
– Positive program impact?

• Maybe farmers w/ greater ability 
enroll, & can survive drought better

• What if decline = nonrecipient
neighbors?
– No program impact?

• Maybe spillovers of fertilizer
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Type 2: Counterfeit Counterfactual 
(Health Insurance Program)

• Compare enrolled and non-enrolled families in country
• Find statistically significant difference. Should program be expanded?
• Now control for various other factors. Should program be expanded?

18



Comparing Treated and Untreated
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Comparing Treated and 
Untreated (An Example)
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Impact Evaluation Approaches

Differences in Differences Matching

Regression Discontinuity Randomized Evaluation
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• Dr. John Snow (1813-1858) one of 
founders of modern epidemiology.

• Studied London Cholera Outbreak in 
1848-1854.

• 250,000 cases & 53,000 deaths in 
peak two-year period.

• Didn’t know germs caused disease, 
airborne “miasmas” common belief.

• Snow hypothesis: causal agent in 
sewage-contaminated water

John Snow and the Discovery of 
Cholera
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The Broad Street Pump
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Water Supply in London
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• Natural experiment: Lambeth company has clean water.  
Southwak and Vauxhall company have infected sources.  

• Location of pumps is “as if” random.  Broad Street pump is 
S&V.  Clean pumps are Lambeth.  Residents do not get to 
select company (no selection bias).

• For houses served by Southwark and Vauxhall, the death rate 
from cholera was 315 per 10,000; for houses served by 
Lambeth, it was a mere 37 per 10,000
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• Striking difference in death rate varied by water source
• Not selected by current residents, typically unknown

• Snow: >1,000 lives would be saved if Southwark moved 
intake

• Example of how shoe leather—rather than reliance on 
statistical technnology—can achieve causal inference w/ 
observational data

Evidence



Deviant Cases Prove Rule

– Brewery workers around Broad Street did not get sic 
(sick).

– At addresses closer to Lambeth pumps, infected people 
preferred Broad Street water (i.e. a widow sent out for 
it).
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SUMMING UP
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10 Things You Need to Know 
About Causal Inference

1. A causal claim is a statement about what didn’t happen.

2. There is a fundamental problem of causal inference.

3. You can estimate average causal effects even if you cannot 
observe any individual causal effects.

4. If you know that, on average, A causes B and B causes C, this 
does not mean that you know that A causes C.
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10 Things You Need to Know 
About Causal Inference

5. The counterfactual model is all about contribution, not 
attribution.

6. X can cause Y even if there is no “causal path” connecting X 
and Y.

7. Correlation is not causation

8. X can cause Y even if X is not a necessary condition or a 
sufficient condition for Y.

9. Estimating average causal effects does not require that 
treatment and control groups are identical.

10. There is no causation without manipulation
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10 Things You Need to Know 
About Causal Inference
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