Lecture 10: How to Make a Pre-Analysis Plan (PAP)

Edmund Malesky, Ph.D.

July 16, 2018

Duke University

What is a PAP?

- A PAP, sometimes called a research or study protocol, is a document outlining the technical details of a study
 - Written before the study is conducted
 - Includes: type of study to be conducted, sources of data, how the variables will be constructed, model specifications, problems that may arise over the course of the study, and how those problems will be addressed.

Why are PAP's Necessary?

- Raise the credibility and reliability of research results.
- PAPs allow for a higher level of confidence, particularly where researchers are seeking to confirm a hypothesis rather than simply explore potential causal relations.
- By "tying one's 2 hands" through a PAP, reported results will not reflect statistical noise hand-picked from the data.

When Should We Make a PAP?

A PAP should be written and registered before
the intervention begins, so as to ensure and
publicly display the fact that a hypothesis is
made prior to seeing any data.

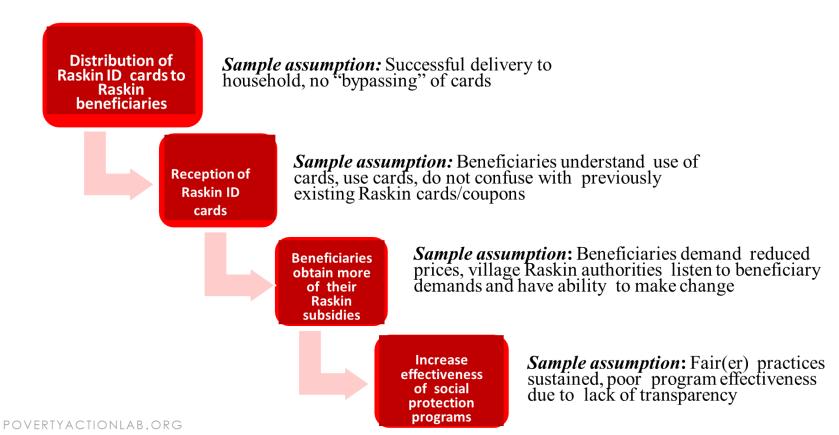
1. Page 1

- Name/title of the project
- Authorship: all researchers involved and their affiliations.
- External partner institutions (if applicable)
- Conflicts of Interest: list any conflicts of interest for all study authors
- Brief summary of project and objective/rationale for conducting this study.

2. Statement of Policy Problem

- What is the key issue faced that requires policy change or improvement?
 - Outcome variable that we would like to change.
 - Previous research on the issue.
 - Any conflicting views about the problem

3. Background Research


- Delineate different policy suggestions.
- Discuss prevailing theories in literature.
- Where does this research fit-in?
- Discuss previous research on this problem in Vietnam and in other contexts.

4. Theory of Change

- Identify key hypotheses to be tested.
 - Hypotheses are "testable statement about the empirical relationship between cause and effect."
 - Specify units being compared
 - Which variables are expected to be related
 - Tendency of that relationship
- Declare any important sub-group analysis and expected heterogeneous effects

4. Theory of Change

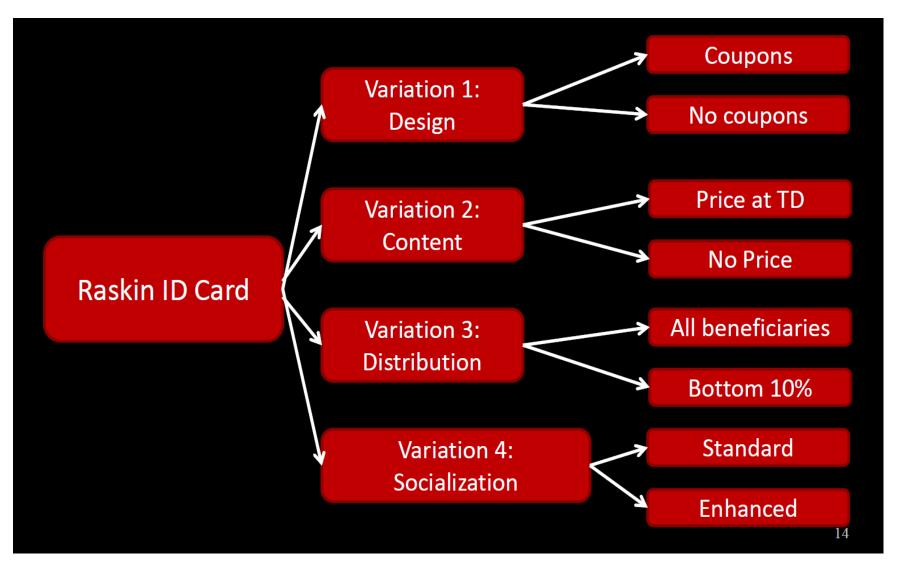
9

5. Log Frame

Inputs _	Activities	Outputs	Outcomes	Final Outcomes
 Budget for new vocational training program. Staffing from DOET, vocational instructors Training facilities (rooms, computers) 	 Design of new curriculum. Instructor training. Development and printing of course materials. Development of software 	 1000 vocational training instructors trained on new curriculum. 100,000 textbooks and copies of software delivered to classrooms 	 Instructors use new textbooks and software in class. Students are learning new curriculum. Improved student performance of end of class exam 	 Improved competency of material. More students hired by firms. Higher employment Labor productivity of firms goes up.

Implementation (Supply Side)

Results (Demand + Supply)

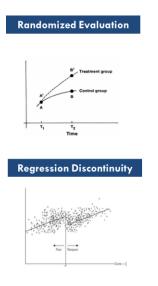

6. RESEARCH DESIGN

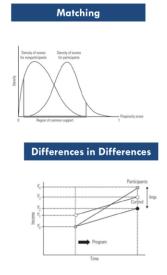
6.1. Major Design Choice

1. Randomized Controlled Trial

- Type
 - Clinical Design
 - Over-Subscription
 - Randomized Oder of Phase-In
 - Encouragement
 - Spillover/Saturation
- Number of Arms
 - Single arm
 - Multiple arms
 - Factorial design (identify treatment groups)

Tree Approach

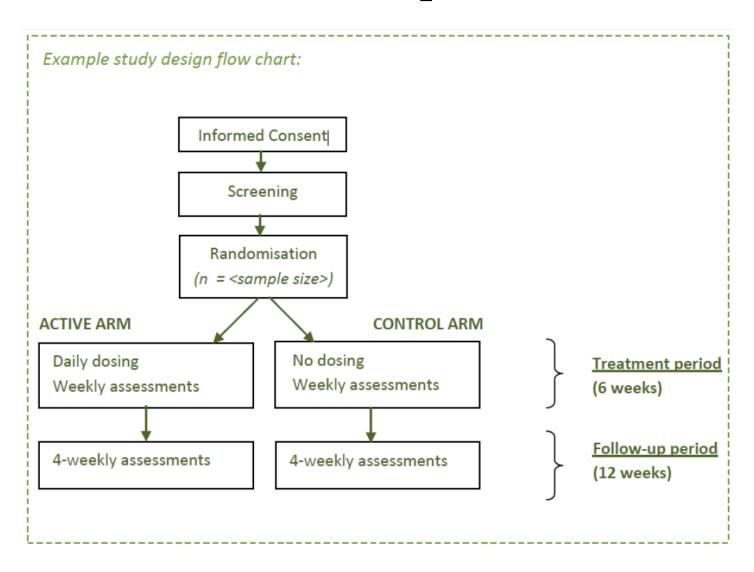

Tabular Approach


Car	d Variations		Standard socialization	Enhanced Socialization		
	Price	Coupon	Group 1	Group 2		
All	11100	No Coupon	Group 3	Group 4		
beneficiary	No Price	Coupon	Group 5	Group 6		
	NOTTICE	No Coupon	Group 7	Group 8		
	Price	Coupon	Group 9	Group 10		
Bottom 10%	11100	No Coupon	Group 11	Group 12		
20002070	No Price	Coupon	Group 13	Group 14		
	NOTTICE	No Coupon	Group 15	Group 16		
			Control (No card, no	o socialization)		

6.1. Major Design Choice

2. Natural Experiment

- Type
 - Regression Discontinuity
 - Difference-in-Differences
 - Propensity Score Matching
 - Instrumental Variables
 - Combined approach

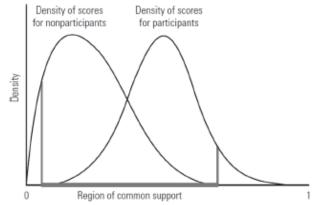


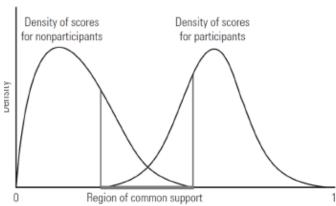
Design	When to use	Advantages	Disadvantages		
Randomization	Whenever feasible When there is variation at the individual or community level	□Gold standard □Most powerful	■Not always feasible ■Not always ethical		
Randomized Encouragement Design	When an intervention is universally implemented	Provides exogenous variation for a subset of beneficiaries	Only looks at subgroup of sample Power of encouragement design only known ex post		
Regression Discontinuity	If an intervention has a clear, sharp assignment rule	Projectbeneficiaries oftenmust qualify throughestablished criteria	Only look at subgroup of sample Assignment rule in practice often not implemented strictly		
Difference-in- Differences	If two groups are growing at similar ratesBaseline and followup data are available	Eliminates fixed differences not related to treatment	■Can be biased if trends change ■Ideally have 2 pre-intervention periods of data		
Matching	When other methods are not possible	Overcomes observed differences between treatment and comparison	Assumes no unobserved differences (often implausible)		

6.2. Study Design and Procedures

- The geographic region
- Research population
- Sampling frame
- Inclusion/exclusion criteria (with clear justification)
- Unit of analysis and definition of cluster (if applicable)
- Attrition criteria as applied to individual participants
- Early termination criteria for the study (e.g. the treatment works so well that the project is halted and the treatment is administered to all study participants)
- Expected timeline of the study, including a detailed description of when the intervention and data collection will take place

Flow Chart of Implementation




6.3. Describe Intervention in Detail

- If the intervention involves a technology or medical treatment, provide technical details for how the technology/treatment will work.
- Provide a description of how the intervention will differ between the control and treatment groups and/or between subgroups (if applicable).
- If there are several treatment arms, detail how each arm will differ from each other as well as the control group.
- Blinding:
 - Single-Blind: Subjects don't know treatment conditions
 - Double-Blind: Data collectors don't know treatment conditions
 - Triple-Blind: Analysts don't know treatment conditions

6.4. Assumptions

- RCT
 - Conditional Independence; No Contamination
- Natural Experiments
 - All: "As if Random"
- Regression Discontinuity
 - No Sorting; Balance; No Polynomial Function;
 Survives Placebo
- Diff-in-Diff
 - Parallel Trends; Survives Placebo
- Propensity Score Matching
 - Conditional Independence; Common Support
- Instrumental Variables
 - Conditional Independence; Exclusion Criterion, Instrument Strength

- What will the sources of data be?
- What is your sample frame?
- How will the data be collected (e.g., in-person interviews)?
- Provide rationale for using certain methods of data collection over others.
- If there is data used in the study that is not collected by your team (e.g., third-party administrative data), describe the source of the data.

6.6. Randomization

- If the study is a randomized controlled trial, define the randomization procedure in advance.
- How will it be done (In excel? Physical lottery?
 Through a statistical program such as STATA?). If there is a process with pieces of paper randomly drawn, how will the process ensure that it is not possible to interfere with randomization?
- What is the unit of randomization (e.g. individual, cluster)? Provide justification for this decision.

What stratification variables are used (if any)?

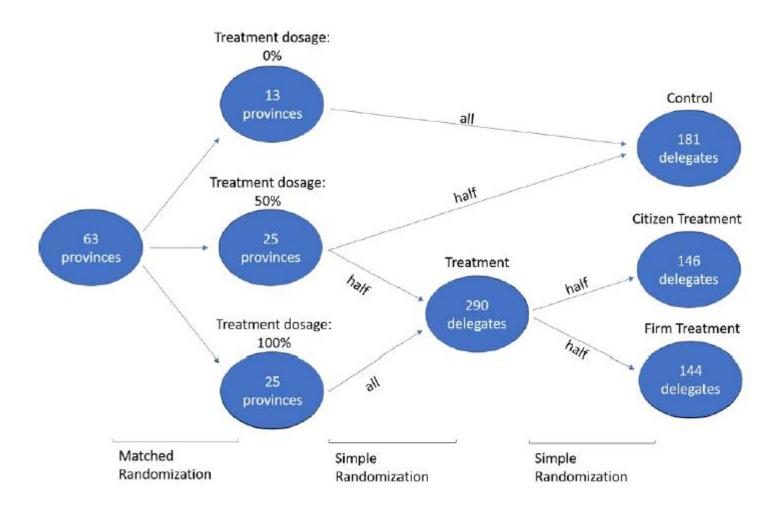


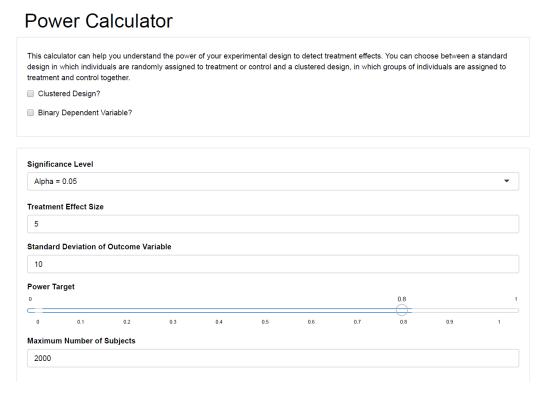
Figure 5: Randomization strategy

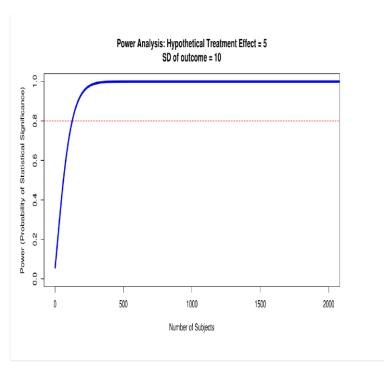
6.7 Power Calculations

 If budget is unknown and you are appealing for funding, calculate necessary sample size.

$$N > \frac{\delta}{\left(ETE / \left(\left(t_{1-\kappa} + t_{\alpha/2}\right)\sqrt{\frac{1}{p(1-p)}}\right)\right)^{2}}$$

If budget is known, calculate minimum detectable effect.


$$MDE > \left(t_{1-\kappa} + t_{\alpha/2}\right) \sqrt{\frac{1}{p(1-p)}} \sqrt{\frac{\sigma^2}{N}}$$


 If clustered design, remember to take into account second level.

$$MDE > \left(t_{1-\kappa} + t_{\alpha/2}\right) \sqrt{\frac{1}{p(1-p)J}} \sigma \sqrt{\rho + \frac{1-\rho}{n}}$$

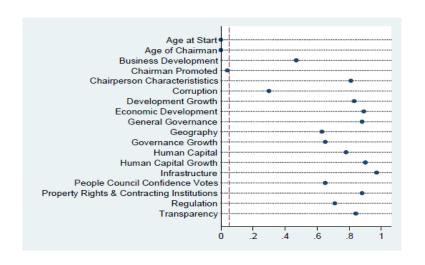
6.7 Power Calculations

 Feel free to use EGAP calculator and display graphs of MDE at different levels.

https://egap.shinyapps.io/Power_Calculator/

7. Analysis

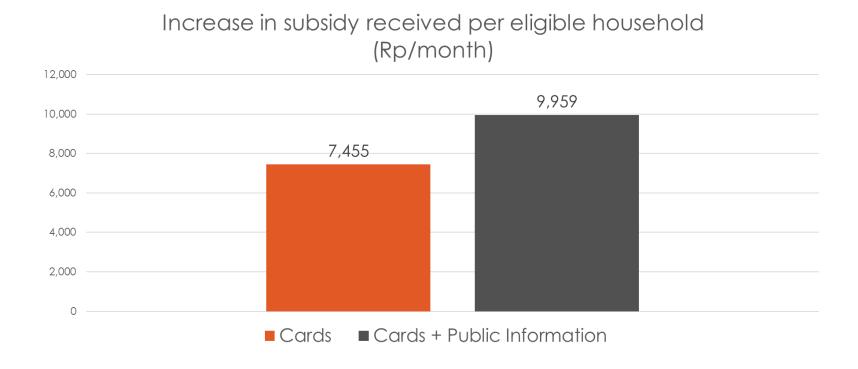
- If variables will be constructed (e.g. creating index variables), how will they be constructed?
- What are the primary model specifications?
 Include this in the PAP.
- If multiple hypothesis testing will be done, how will this be accounted for in the analysis?


7.1. Balance

 Use preliminary or mock data to calculate prepare balance tests (table or graph)

	(1)	(2) Difference between	(3)	(4)		(1)	(2) Difference between	(3)	(4)
	Mean in Meeting Group	Plebiscite and Meeting Group	p Value	Num Obs		Mean in Meeting Group	Plebiscite and Meeting Group	p Value	Nun
Village characteristics					Village government characteristics				
Village population (1,000 inhabitants)	2.401 [2.726]	-0.295 (0.598)	0.625	49	Village head age	45.935 [8.370]	(3.059)	0.443	47
Agricultural wage (1,000 Rupiah)	21.023 [5.892]	-1.061 (1.443)	0.466	43	Village head years of education	11.645 [2.026]	-1.409 (0.788)	0.081*	47
Percent village roads that are asphalt	0.305 [0.269]	-0.042 (0.062)	0.507	49	Number of village head candidates in last village head election	2.207 [1.013]	(0.383)	0.432	44
Number of hamlets per village	4.813	-0.633 (0.423)	0.142	49	More than one candidate in last village head election	0.724	(0.116)	0.449	44
Number of churches and mosques per village	2.438	-0.220 (0.563)	0.698	49	Share of population that voted in last village head election	0.888	-0.004 (0.031)	0.910	43
Distance to subdistrict capital (km)	5.766 [6.509]	3.548 (2.173)	0.109	49	Village head's margin of victory in last election (if challenger)	0.263	-0.011 (0.069)	0.870	33
Village ethnic fragmentation	0.268	-0.075	0.190	49	Number of village government executive branch members	8.516	-0.616	0.386	47
Village religious fragmentation	[0.250] 0.106 [0.137]	(0.056) 0.011 (0.051)	0.827	49	Share of hamlets represented in village executive branch	[2.850] 0.853 [0.240]	(0.703) 0.043 (0.056)	0.442	47
		()			Number of people in village parliament	7.750	-0.976 (0.832)	0.249	36
Survey respondent characteristics									
Survey respondent predicted log per capita expenditure	11.505 [0.279]	(0.066)	0.602	224	Share of hamlets represented in village parliament	0.843	(0.054)	0.339	36
Survey respondent years education	8.925	-0.519 (0.616)	0.404	244	Number of village parliament meetings in last year	5.714	-1.853 (0.878)	0.041**	44
Survey respondent is female	0.431	(0.025)	0.292	245	Village parliament district system (1 = district, 0 = at large)	0.241	0.081	0.587	45
Survey respondent age	41.700	1.896	0.271	245	Number of previous KDP projects	1.875	-0.239	0.455	49
Survey respondent is farmer	[12.021] 0.594 [0.493]	(1.701) -0.052 (0.084)	0.541	245		[0.976]	(0.318)		

Notes: Column (1) presents the mean of the listed variable in the meeting villages, with standard deviations in brackets. Column (2) presents the difference between election and meeting villages, estimated with wave fixed effects, with notuset standard errors in parentheses obtained at the village level. Column (3) shows the p value from a test of the null hypothesis that the listed variable is not different between elections and meeting villages. Column (4) shows the number of observations of the listed variable.


**significant at 10%; **significant at 15%; **significant at 15%.

Note: Blue dots represent p-values from MANOVA analyses of grouped variables. The y-axis supplies the title of each grouping. A full list of indicators under each title can be found in Online Appendix B. Dashed line represents p=.05 from the MANOVA analysis. For dots below that number, we reject the null hypothesis that the treatment and control are different on that set of criteria.

7.2. Prepare Descriptive Analysis

Use mock data to create table or graph.

7.3. Econometric Analysis

Pre-State Equations and Prepare Mock Tables

$$\begin{aligned} &\Pr(Outcome_i = 1) = \beta_0 + \beta_1 CitizenCard_i + \beta_2 FirmCard_i \\ &+ \beta_3 Fulltime_i + \beta_4 CNo\min ated_i + \beta_5 VoteShare_i + \lambda_p + u_i \end{aligned}$$

Mock Table 1: Effects of Experiment on Responsiveness of Delegates

	DV: N	Made up Mi	nd=1	DV: Sufficient Info.=1				
	No	Blocking	Province	No	Blocking	Province		
Dependent variable	Controls	Variables	FE	Controls	Variables	FE		
	(1)	(2)	(3)	(5)	(6)	(7)		
Citizen Treatment=1								
Firm Treatment=1								
Full Time=1								
Centrally Nominated=1								
Delegate Vote Share (%)								
Constant								
Provincial FE	No	No	Yes	No	No	Yes		
Observations	485	485	485					
Clusters	63	63	63	63	63	63		
R-Squared								
RMSE								

Linear probability model (OLS) with standard errors, clustered by province, in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Panel 1 studies whether delegates had made up their mind on Education Law in VNA library Survey. Panel 2 studies whether delegate said more constituent information was necessary . Equations 1 & 4 are unadjusted, Equations 2 & 5 control only for blocking variables, and Equations 3 & 6 introduce province fixed effects.

Mock Table 2: Effects of Experiment on Responsiveness of Delegates (Provincial Level Analysis)

	DV: Me	ntion in Ca	ucus=1	DV: Count in Caucus			DV: Mo	ention on F	loor=1	DV: Count on Floor		
	No	Blocking	Regional	No	Blocking	Regional	No	Blocking	Regional	No	Blocking	Regiona
Dependent variable	Controls	Variables	FE	Controls	Variables	FE	Controls	Variables	FE	Controls	Variables	FE
	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)	(1)	(2)	(3)
Citizen Treatment=1												
Firm Treatment=1												
Full Time Share												
Centrally Nominated Share												
Delegate Vote Share (%)												
Provincial GDP												
Provincial Population												
Central Transfers												
National Level City=1												
Constant												
Regional FE	No	No	Yes	No	No	Yes	No	No	Yes	No	No	Yes
Observations R-Squared RMSE	63	63	63	63	63	63	63	63	63	63	63	63

Standard errors, clustered by province, in parentheses (*** p<0.01, ** p<0.05, * p<0.1). Panel 1 studies whether delegates speak in provincial caucus (OLS). Panel 2 studies number of speeches in caucus (Poison). Panel 3 studies whether delegates speak on floor (OLS). Panel 4 studies number of speeches on floor (Poison). Equations 1 are unadjusted, Equations 2 control only for blocking variables, and Equations 3 introduce province fixed effects.

8. Conclusion

- Potential limitations
 - Anticipate them and describe how they will be solved.
- Scaling Up and Extensions
 - What will happen if initial experiment successful
- Policy Implications
 - Describe cost benefit analysis based on minimum detectable effect.