EVALUATION

Sonpvh.2019.05.May

OUTLINE

- 1. The machine learning workflow
- 2. Evaluation Metrics
- 3. Offline Evaluation mechanisms
- 4. Hyperparameter turning
- 5. A/B Testing
- 6. Casual-Effect

1. MACHINE LEARNING WORKFLOW

TRAIN (100k loans)

Features: User behaviors Lending information

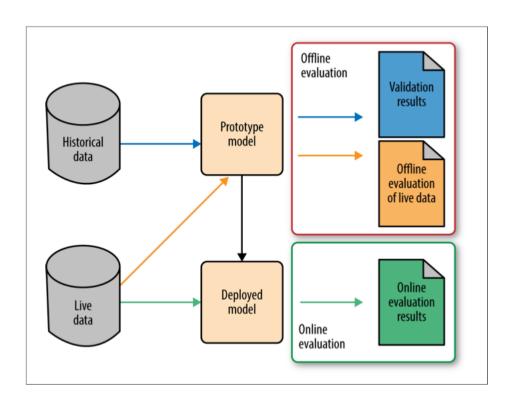
User history

MODEL

TEST (20k loans)

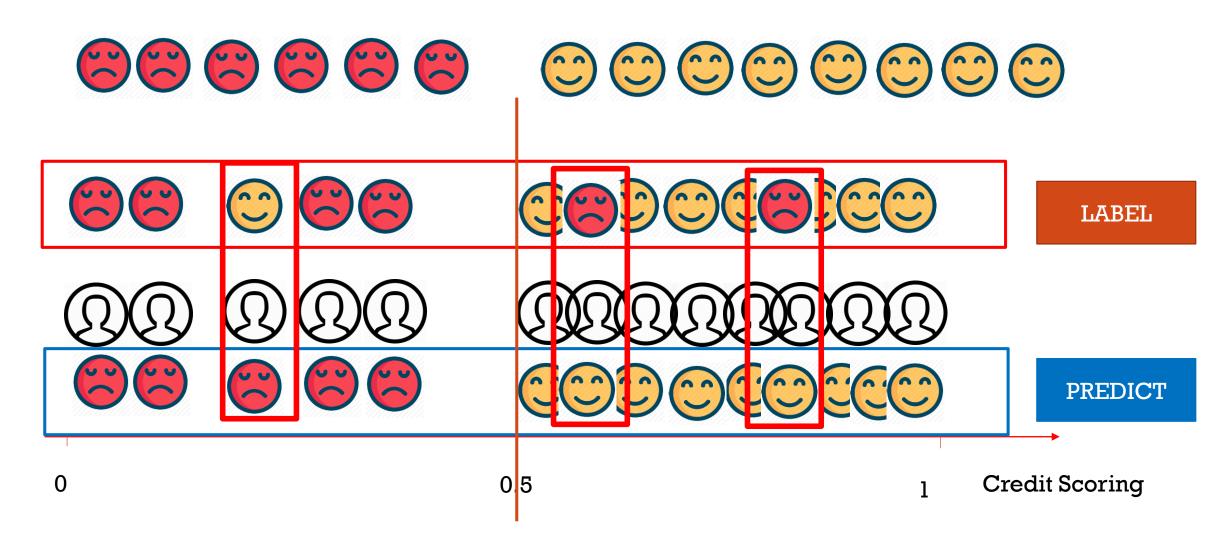
Bank: Label

Credit Scoring



Outcome

Predicted


1. MACHINE LEARNING WORKFLOW [1]

Why is it so complicated?

- 1. Offline evaluation: accuracy, precision, recall, MSE ...
 Online evaluation: business metrics
- 2. Distribution drift: the distribution of data changes overtime, so keep track the models performance on the validation metrics of live data.

2. EVALUATION METRICS: BINARY CLASSIFICATION[2]

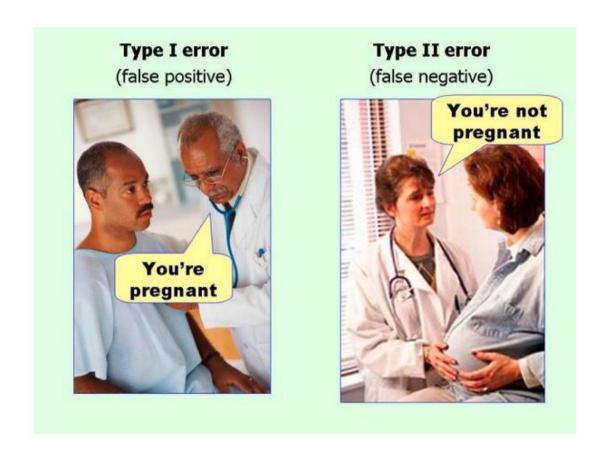
2. EVALUATION METRICS: BINARY CLASSIFICATION [2]

Th	TP	TN	FP	FN	Acc	Pre	Recall	F
0.5	9	8	2	1	0.85	0.81	0.9	0.85

$$ext{Accuracy} = rac{tp+tn}{tp+tn+fp+fn}$$

$$ext{Precision} = rac{tp}{tp+fp}$$

$$ext{Recall} = rac{tp}{tp+fn}$$

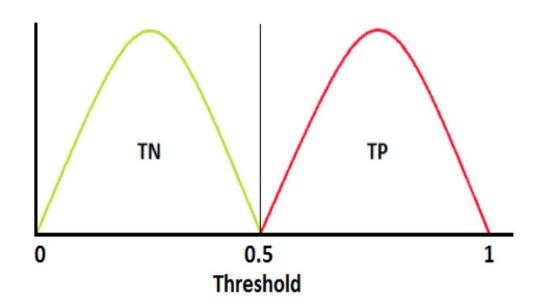

$$F = 2 \cdot rac{ ext{precision} \cdot ext{recall}}{ ext{precision} + ext{recall}}$$

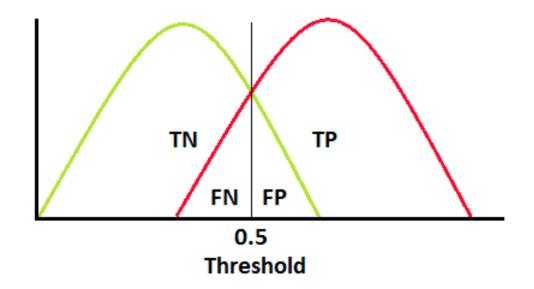
Negative labelled example

Confusion Matrix

Positive labelled example

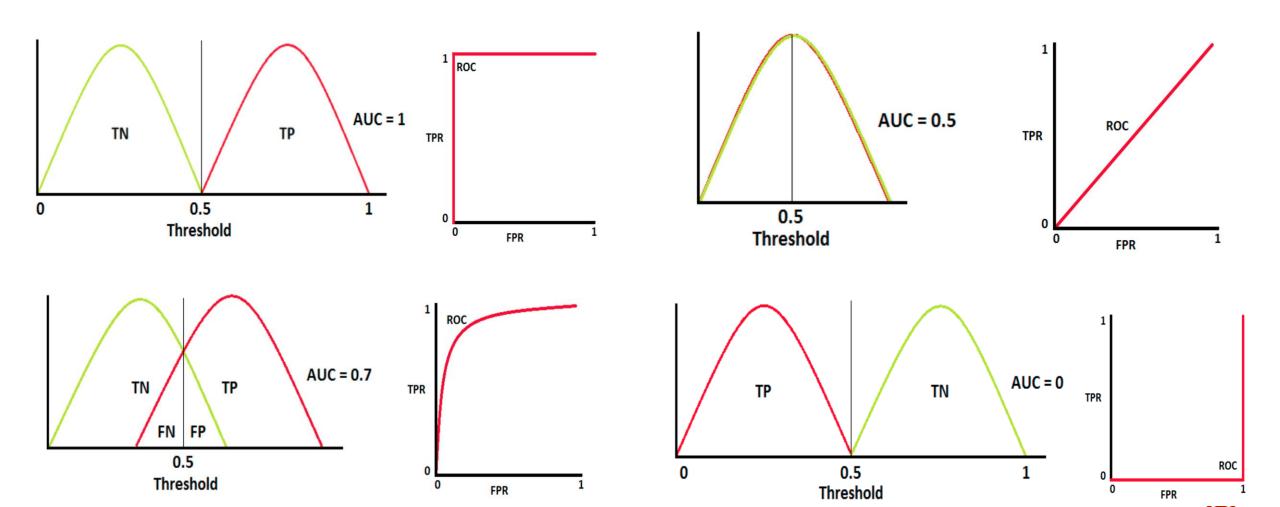
2. EVALUATION METRICS [2]




2. EVALUATION METRICS: CHANGING THRESHOLD [2]

Threshold	TP	ΓN	FP I	N	Accuracy		Precision	Recall	S	pecificity	F	1
1.00	0	10	0	10	0.5	D	1	0		1		0
0.95	1	10	0	9	0.5	5	1	0.1		1		0.182
0.90	2	10	0	8	0.6	D	1	0.2		1		0.333
0.85	2	9	1	8	0.5	5	0.667	0.2		0.9		0.308
0.80	3	9	1	7	0.6	D	0.750	0.3		0.9		0.429
0.75	4	9	1	6	0.6	5	0.800	0.4		0.9		0.533
0.70	5	9	1	5	0.7	ס	0.833	0.5		0.9		0.625
0.65	5	8	2	5	0.6	5	0.714	0.5		0.8		0.588
0.60	6	8	2	4	0.7	D	0.750	0.6		0.8		0.667
0.55	7	8	2	3	0.7	5	0.778	0.7		0.8		0.737
0.50	8	8	2	2	0.8	ס	0.800	8.0		0.8		0.800
0.45	9	8	2	1	0.8	5	0.818	0.9		0.8		0.857
0.40	9	7	3	1	0.8	D	0.750	0.9		0.7		0.818
0.35	9	6	4	1	0.7	5	0.692	0.9		0.6		0.783
0.30	9	5	5	1	0.7	ס	0.643	0.9		0.5		0.750
0.25	9	4	6	1	0.6	5	0.600	0.9		0.4		0.720
0.20	9	3	7	1	0.6	D	0.562	0.9		0.3		0.692
0.15	9	2	8	1	0.5	5	0.529	0.9		0.2		0.667
0.10	9	1	9	1	0.5	0	0.500	0.9		0.1		0.643
0.05	10	1	9	0	0.5	5	0.526	1		0.1		0.690
0.00	10	0	10	0	0.5	0	0.500	1		0		0.667

2. RECEIVER OPERATING CHARACTERISTIC (ROC) CURVE, AREA UNDER THE ROC (AUC) [3]



$$TPR = \frac{TP}{TP + FN} = RECALL (SENSITIVITY)$$

$$FPR = \frac{FP}{TN + FP}$$

2. ROC, AUC [3,4]

2. EVALUATION METRICS: REGRESSION

• Ex: prediction...

$$\mathbf{RMSE} = \sqrt{\frac{\sum_{i} (y_i - \hat{y}_i)^2}{n}}$$

MAPE = median(
$$|(y_i - \hat{y}_i)/y_i|$$
)

2. EVALUATION METRICS: CLASSIFICATION

Ex: spam detection, prostitute detection...

$$accuracy = \frac{\text{\# correct predictions}}{\text{\# total data points}}$$

	Predicted as positive	Predicted as negative			
Labeled as positive	80	20			
Labeled as negative	5	195			

Confusion matrix

Per-class accuracy

log-loss =
$$-\frac{1}{N} \sum_{i=1}^{N} y_i \log p_i + (1 - y_i) \log (1 - p_i)$$

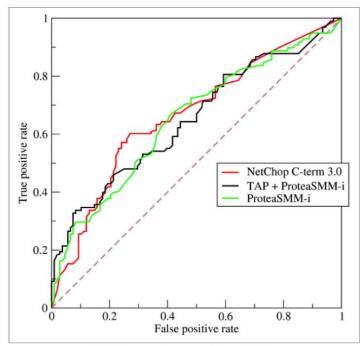
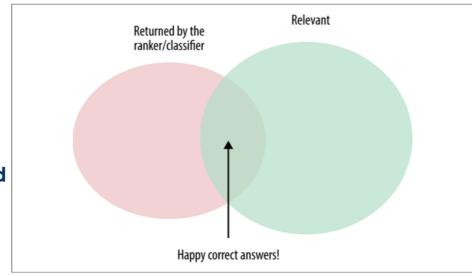


Figure 2-2. Sample ROC curve (source: Wikipedia)

ROC: receiver operating characteristic

AUC: area under the curve

2. EVALUATION METRICS: RANKING


Ex: search ranker, personalized recommendation ...

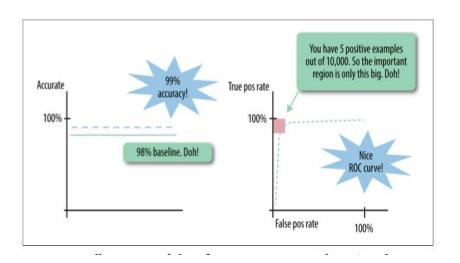
		Reality				
		Actually Good	Actually Bad			
ction	Rated Good	True Positive (tp)	False Positive (fp)			
Prediction	Rated Bad	False Negative (fn)	True Negative (tn)			

All recommended

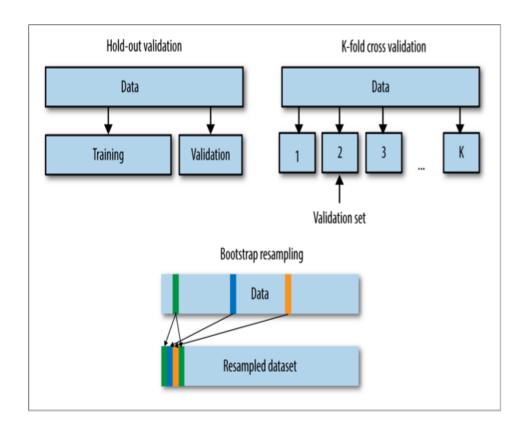
All good items

"The precision is the proportion of recommendations that are good recommendations, and recall is the proportion of good recommendations that appear in top recommendations."

precision =
$$\frac{\text{# happy correct answers}}{\text{# total items returned by ranker}}$$


$$recall = \frac{\text{# happy correct answer}}{\text{# total relevant items}}$$

2. EVALUATION METRICS: BEST PRACTICE


 Evaluation metrics # model log loss function: Train a personalized recommender by minimizing the loss between its predictions and observed ratings, and then use this recommender to produce a ranked list of recommendations. AVOID

• Skewed data, imbalanced, classes, outliers, rare data: analysis carefully before

doing anything else

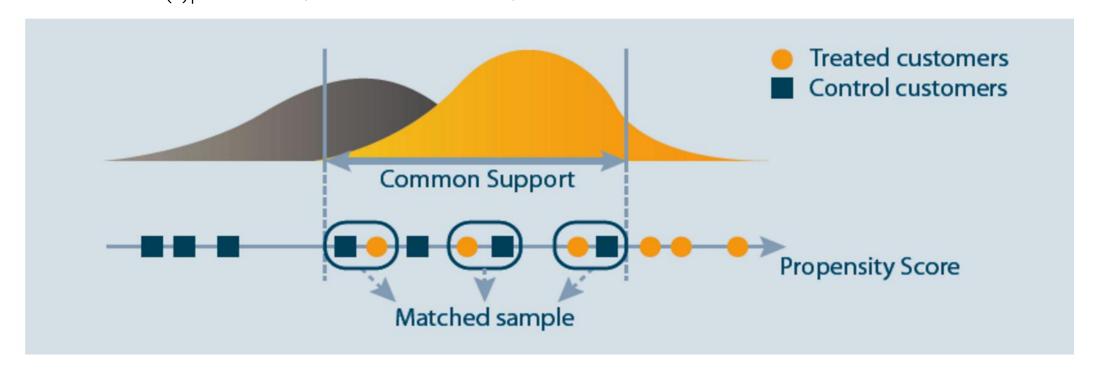
3. OFFLINE EVALUATION MECHANISM

Cross validation: Independently and Identically distributed

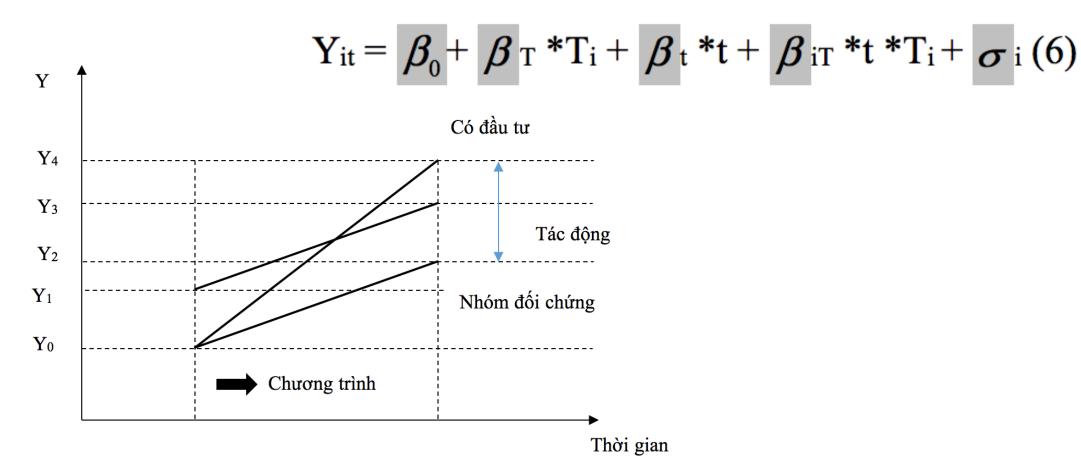
4. HYPER-PARAMETER TURNING

- Model parameter: $y = W^T x$
- Hyper-parameter (nuisance parameters): optimization state.
- Ex:
- Linear regression: regularization parameter,
- Decision trees: desired depth and number of leaves.
- SVMs: misclassification penalty term
- ..

5. A/B TESTING AND ITS PITFALLS


- 1. Split into randomized control/experimentation groups.
- 2. Observe behavior of both groups on the proposed methods.
- 3. Compute test statistics.
- 4. Output decision.

5. A/B TESTING AND ITS PITFALLS


- 1. Baggage of the old: should do A/A testing first
- 2. Choose metrics, indexes (business design)
- 3. Did you count right?
- 4. How many observations do you need?
- 5. Is the distribution of the metric Gaussian?
- 6. Variances equal?
- 7. Multiple models, multiple hypotheses: A/A1/A2/.../B testing
- 8. How long to run the test?
- 9. Catching distribution drift: stationarity assumption

6. PSM - PROPENSITY SCORE MATCHING METHOD

- 1. (Conditional) independence
- 2. Common support
- 3. $TOT = E_{P(X)|T=1} \{E[Y^{(1)}|T=1, P(X)] E[Y^{(0)}|T=0, P(X)]\}$

6. DID - DIFFERENCE IN DIFFERENCE

REFERENCES:

- 1. Alice Zheng Evaluating Machine Learning Models O'Reilly Media, Inc. 2015
- 2. http://cs229.stanford.edu/section/evaluation-metrics.pdf
- 3. https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
- 4. http://www.navan.name/roc/