Analysis of Categorical Data

Outline

- The multinomial experiment
- Pearson's Chi-square statistic
- Testing specified cell probabilities
- Contingency tables: a two-way classification

The multinomial experiment

- The experiment consists of n identical trials
- The outcome of each trial falls into one of k categories
- The probability that the outcome of a single trial falls into a particular category is p_i ($0 \le p_i \le 1$, $\sum p_i = 0$) and remains constant from trial to trial.
- Trials are independent.
- The experimenter counts the observed number of outcomes in each category, $O_1, O_2, ..., O_n$ with $\sum O_i = 1$

Pearson's Chi-square Statistic

$$X^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \sum \frac{(O_{i} - np_{i})^{2}}{np_{i}}$$

- X^2 has chi-square probability distribution in repeated sampling
- If hypothesised expected cell counts are incorrect, X^2 is large -> use **right-tailed statistical test** and look for unusually large value of the test statistic X^2
- Expectied cell counts E_i should be larger than 5. If not
 - Increase sample size n
 - Combine smaller cells

Testing specified cell probabilities

Example 1. A researcher sent a rat into a ramp the end of which divides into 3 different doors of three different colours. The number of times the rat enters each door is in the table below. Does the rat have a preference for one of the three doors?

	Door			
	Green	Red	Blue	
Observed counts	20	39	31	

Testing specified cell probabilities

Example 2. The proportions of blood phenotypes A, B, AB, and O in a population are 41%, 1%, 4%, and 45%, respectively. A random sample of 200 people were selected from the population, whose blood phenotypes are presented in the below table. Test the goodness of fit of these blood phenotypes proportions.

	Α	В	AB	0
Observed	89	18	12	81

- Observed counts are structured along 2 dimensions (variables)
- An important/common interest is in examining the relationship between the two variables.
- In other word, is one method of classification dependent on the other methods of classification?

			δniπ	
Type of Defects	1	2	3	Total
Α	15	26	33	74
В	21	31	17	69
C	45	34	49	128
D	13	5	20	38
Total	94	96	119	309

Ch:ft

	No Vaccine	One Shot	Two Shots	Total
Flu	24	9	13	46
No Flu	289	100	565	954
Total	313	109	578	1000

The Chi-square test of Independence

- H₀: the two methods of classification are *independent*
- H_a: the two methods of classification are *dependent*
- Test statistic: $X_t^2=\sum \frac{(O_i-E_i)^2}{E_i}$, where $E_i=np_{ij}=n\frac{r_i}{n}\frac{c_j}{n}$, with a degree of freedom of df = (r-1)(c-1)
- If observed value of X^2 is very large, i.e. $P(X^2 > X_t^2) < \alpha$, reject the null hypothesis H_0 .

Example 3. Does the data collected provide enough evidence to indicate that there is a dependence between defect types and shifts?

	Shift			
Type of Defects	1	2	3	Total
Α	15	26	33	74
В	21	31	17	69
C	45	34	49	128
D	13	5	20	38
Total	94	96	119	309

Example 4. A survey was conducted to evaluate the effectiveness of a new flu vaccine. The results are shown in the following table. Is there enough evidence to indicate that the vaccine was successful in reducing the number of flu cases?

	No Vaccine	One Shot	Two Shots	Total
Flu	24	9	13	46
No Flu	289	100	565	954
Total	313	109	578	1000

Example 5. The result from a survey of people from 4 wards regarding a specific issue A is in the table below. Does the data provide enough evidence to conclude that people in different wards have different levels of support to the issue?

	Ward				
	1	2	3	4	Total
Favor A	76 (59)	53 (59)	59 (59)	48 (59)	236
Do Not Favor A	124 (141)	147 (141)	141 (141)	152 (141)	564
Total	200	200	200	200	800

Example 6. Reconsider Example 5 but with only 2 wards. In order words, is the proportion of people in favour of issue A in Ward 1 similar to that in Ward 2?

Compare the answers using X^2 statistic and z statistic.