Shrinkage methods

Outline

- Ridge regression
- The lasso
- Elastic net

Ridge regression

Ridge regression optimising function

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} \beta_j^2 = \text{RSS} + \lambda \sum_{j=1}^{p} \beta_j^2$$

If lambda = 0, ridge regression becomes OLS. When lambda is very large, ridge coefficients are *shrunk toward 0* (but not exactly 0).

Different lambda values will result in different sets of coefficients => using validation to decide the lambda value that minimises test error.

Ridge regression adds bias to the estimation of betas via lambda => reduce variation & improve predictive performance.

Ridge regression

It is best to standardise the predictors before ridge regression

- OLS regression coefficients are *scale equivariant*. Ridge regression coefficients are not.
- Ridge regression coefficients are shrunk toward zero and toward each other.
- The shrinking between coefficients not on the same scale would be unequal.
- Standardisation brings predictors to the same scale => allow us to rank relative importance of the predictors. More important predictors have higher standardised coefficients.

The Lasso

The Lasso optimising function

$$\sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 + \lambda \sum_{j=1}^{p} |\beta_j| = \text{RSS} + \lambda \sum_{j=1}^{p} |\beta_j|$$

Unlike ridge regression, the shrinkage penalty in the lasso can force some regression coefficient estimates *to be exactly 0*.

=> The lasso effectively performs variable selection, results in simpler models & improves model interpretability (like subset selection methods but *faster*!)

Like ridge regression, the lasso adds bias to the estimation of betas via lambda => reduce variation & improve predictive performance.

Ridge regression vs the lasso - estimating optimum lambda

Estimating lambda that results in smallest test error for ridge regression and the lasso using the Credit dataset example.

[See the attached notebook for sample Python codes and the results]

Another formulation for ridge regression and the lasso

Ridge regression

$$\underset{\beta}{\operatorname{minimize}} \left\{ \sum_{i=1}^{n} \left(y_i - \beta_0 - \sum_{j=1}^{p} \beta_j x_{ij} \right)^2 \right\} \quad \text{subject to} \quad \sum_{j=1}^{p} \beta_j^2 \leq s.$$

$$\underset{\beta}{\overset{\beta_2}{\underset{i=1}{\overset{\beta_2}{\underset{j=1}{\underset{j=1}{\overset{\beta_2}{\underset{j=1}{\overset{\beta_2}{\underset{j=1}{\underset{j=1}{\overset{\beta_2}{\underset{j=1}{\atopj=1}{\underset{j=1}{\overset{\beta_2}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\atop{j=1}{\atopj=1}{\overset{\beta_2}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\underset{j=1}{\atop{j=1}{\atopj=1}{\underset{j=1}{\atop{j=1}$$

How are ridge regression and the lasso better than OLS?

OLS has no means to control bias (and variance) => unique set of coefficients.

Ridge regression and the lasso allows for the introduction of bias into the estimation of coefficients (via lamba).

Higher lambda => higher bias but lower variance => better generalisation => better predictive performance.

Ridge and the lasso can handle cases where p > n.

Multicollinearity:

- Ridge regression: coefficients of correlated predictors are equal.
- The lasso: coefficient of some of the correlated predictors become 0.

Elastic net

- Ridge regression better when the predictors have relatively equal importance
- The lasso better when some predictors are dominant over the others.
- But we don't know any of those => best way is to combine them!
- Elastic net the shrinkage penalty in the optimising function replaced by

Exercise

Perform ridge regression and the lasso with the Boston dataset, using crime rate (column 'crim') as the response and others as the predictors.