Analysis of Categorical Data

Outline

- The multinomial experiment
- Pearson's Chi-square statistic
- Testing specified cell probabilities
- Contingency tables: a two-way classification

The multinomial experiment

- The experiment consists of n identical trials
- The outcome of each trial falls into one of k categories
- The probability that the outcome of a single trial falls into a particular category is $p_i (0 \le p_i \le 1, \sum p_i = 0)$ and remains constant from trial to trial.
- Trials are independent.
- The experimenter counts the observed number of outcomes in each category, O_1 , O_2 , ..., O_n with $\sum O_i = n$.

Pearson's Chi-square Statistic

$$X^{2} = \sum \frac{(O_{i} - E_{i})^{2}}{E_{i}} = \sum \frac{(O_{i} - np_{i})^{2}}{np_{i}}$$

- X²has chi-square probability distribution in repeated sampling.
- If the expected cell counts E_i are different to the observed cell counts O_i => X² is large => use right-tailed statistical test and look for unusually large value of the test statistic X².
- Important. Expected cell counts E_i should be larger than 5. If not,
 - Increase sample size n
 - Combine smaller cells

The goodness-of-fit test (Testing specified cell probabilities)

- H₀: The specified multinomial probabilities p₁, p₂, ..., p_k are **true**
- Ha: The specified multinomial probabilities p₁, p₂, ..., p_k are false (i.e. observations don't follow these probabilities)

• Test statistic:
$$X_t^2 = \sum \frac{(O_i - E_i)^2}{E_i}$$
, where $E_i = np_i$, with a degree of freedom of df = $(k - 1)$

• If the value of X_t^2 is very large, i.e. $P(X^2 > X_t^2) < \alpha$, reject the null hypothesis H_0 .

The goodness-of-fit test (Testing specified cell probabilities)

Example 1. A researcher sent a rat into a ramp the end of which divides into 3 different doors of three different colours. The number of times the rat enters each door is in the table below.

Does the rat have a preference for one of the three doors?

	Door			
	Green	Red	Blue	
Observed counts	20	39	31	

The goodness-of-fit test (Testing specified cell probabilities)

Example 2. The proportions of blood phenotypes A, B, AB, and O in a population are 41%, 1%, 4%, and 45%, respectively. A random sample of 200 people were selected from the population, whose blood phenotypes are presented in the below table. Test the goodness of fit of these blood phenotypes proportions.

	А	В	AB	0
Observed	89	18	12	81

Contingency tables: A two-way classification

- Observed counts are structured along 2 dimensions (variables).
- An important/common interest is in examining the relationship between the two variables.
- In other words, is one method of classification dependent on the other method of classification?

			Shift	
Type of Defects	1	2	3	Total
A	15	26	33	74
В	21	31	17	69
С	45	34	49	128
D	13	5	20	38
Total	94	96	119	309

	No Vaccine	One Shot	Two Shots	Total
Flu	24	9	13	46
No Flu	289	100	565	954
Total	313	109	578	1000

The Chi-square test of independence

- H₀: the two methods of classification are **independent**
- Ha: the two methods of classification are **dependent**

• Test statistic:
$$X_t^2 = \sum \frac{(O_i - E_{ij})^2}{E_{ij}}$$
, where $E_{ij} = np_{ij} = n\frac{r_i c_j}{n n}$, with a degree of freedom of df = $(r - 1)(c - 1)$

• If the value of X_t^2 is very large, i.e. $P(X^2 > X_t^2) < \alpha$, reject the null hypothesis H_0 .

The Chi-square test of independence

Example 3. Does the data presented in the table below provide enough evidence to conclude that there is a dependence between defect types and shifts?

and a second

			Shift	
Type of Defects	1	2	3	Total
А	15	26	33	74
В	21	31	17	69
С	45	34	49	128
D	13	5	20	38
Total	94	96	119	309

The Chi-square test of independence

Example 4. The below table presents results from a survey conducted to evaluate the effectiveness of a new flu vaccine.

Is there enough evidence to conclude that the vaccine was successful in reducing the number of flu cases?

	No Vaccine	One Shot	Two Shots	Total
Flu	24	9	13	46
No Flu	289	100	565	954
Total	313	109	578	1000