Exploratory Data Analysis

Anomalies and missing values

Outline

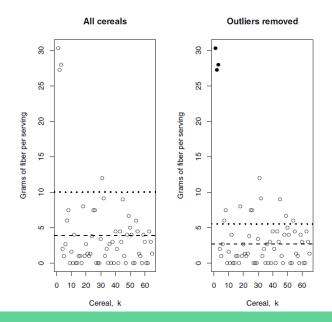
- Steps in Exploratory Data Analysis (EDA)
 - General characteristics of the dataset
 - Descriptive statistics (univariate)
 - Correlation statistics (bivariate)
 - Exploratory visualisation univariate and bivariate
 - Anomalies outliers and inliers
 - Missing values

Outliers - Definition

66 ... an observation (or subset of observations) which appears to be inconsistent with the remainder of that set of data.

V. Barnett and T. Lewis. Outliers in Statistical Data. Wiley, 2nd edition, 1984

- Outliers significantly change the characteristics of a dataset
- They can be results of *gross data errors* or of *special cases*.



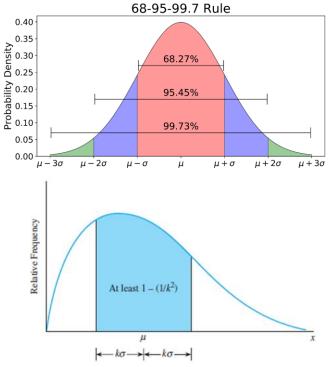
Outliers – Detection methods

Three-sigma method

- Typical value mean \bar{x}
- Data spread standard deviation σ
- Bounds x_k considered outlier if $|x_k \bar{x}| > 3\sigma$

Note that σ is *inflated* by outliers. Bop meo

Larger outlier values -> larger σ -> larger the bound values -> less effective in identifying unusual values.

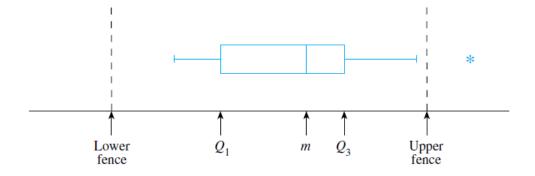


89% for all 99.7% for normal distribution

Outliers – Detection methods

Boxplot method

- Typical value median
- Data spread interquartile range (IQR)
- Bounds x_k considered outlier if $x_k > Q_3 + 1.5IQR$ or $x_k < Q_1 1.5IQR$



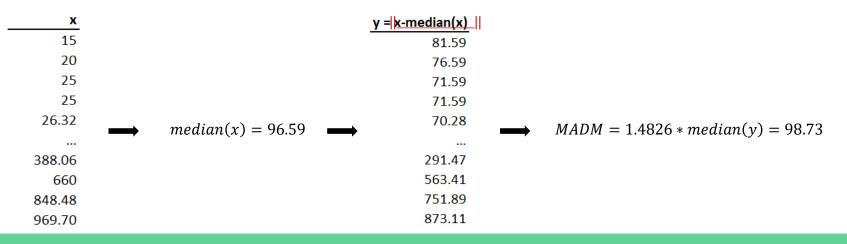
Outliers – Detection methods

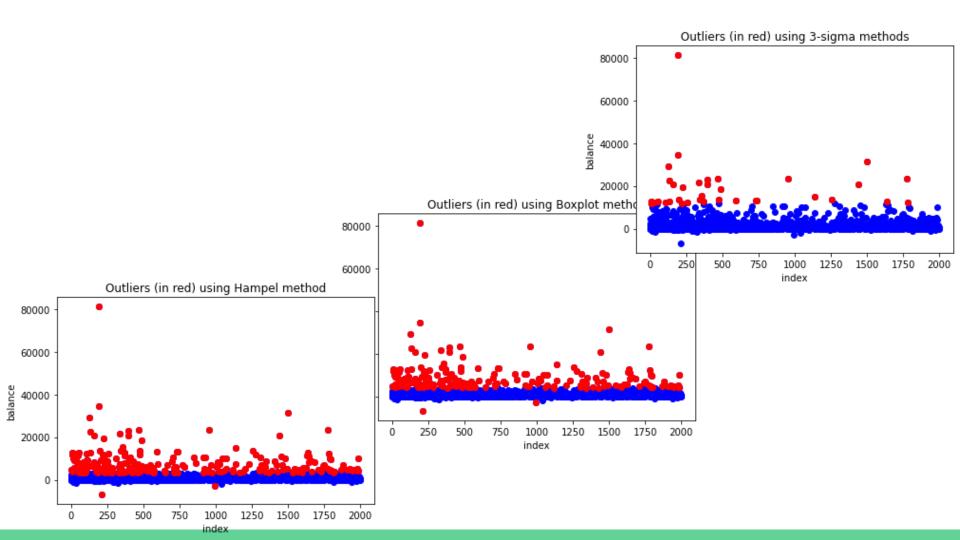
Hampel method

- Typical value median
- Data spread median absolute deviation from median (MADM)

 $MADM = 1.4826 * median(|x_k - median(x)|)$

- Bounds - x_k considered outlier if $|x_k - \text{median}| > 3\text{MADM}$

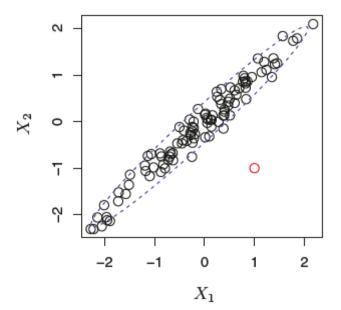




Outliers – Other notes

- Different outlier detection procedures may return different sets of outliers.
- A suggested strategy
 - Apply all possible procedures and compare (i) the number and the value of outliers identified by each procedure, and (ii) the range of the data values not declared as outliers.
 - Apply application-specific assessments, i.e. does the nominal range (excluded outliers) make sense? Do outliers seem extreme enough to be excluded?
 - Visualise the data either with different colours for nominal values and for outliers, or with indication of outlier detection thresholds.
- *Identifying* outliers can be a *mathematical procedure interpreting* the outliers is NOT.
- Outliers are NOT necessarily bad data that should be removed/rejected they simply need further investigation.

Outliers - Multidimensional



Inliers - Definition

... a data value that lies in the interior of a statistical distribution and is an error.
 D. DesJardins. Paper 169: Outliers, inliers and just plain liars – new eda+ techniques

D. DesJardins. Paper 169: Outliers, inliers and just plain liars – new eda+ techniques for understanding data. In *Proceedings SAS User's Group International Conference*, SUG126. Cary, NC, USA, 2001

		Chile\$statusquo	Frequency
Inline often concernt in the form of values which concert	1	-1.80301	1
Inliers often represent in the form of values which repeat	2	-1.74401	1
unusually frequently.			
	19	-1.29617	201
	20	-1.29293	2
	21	-1.28924	1
	22	-1.28897	1
	23	-1.27876	3
	24	-1.27556	1
	25	-1.2727	5
	2092	2.04859	1
	2093	NA	17

Inliers – Detection example

		ChileŞstatusquo	Frequency
Because the majority of numerical values in Chile\$statusquo	1	-1.80301	1
appears only once,	2	-1.74401	1
 the majority of values in Frequency is 1, median of 			
	19	-1.29617	201
Frequency is 1, MADM of Frequency is $0 = >$ we	20	-1.29293	2
cannot use Hampel identifier to detect inliers.	21	-1.28924	1
·	22	-1.28897	1
 Quartiles of Frequency are as below 	23	-1.27876	3
0% 25% 50% 75% 100%	24	-1.27556	1
	25	-1.2727	5
 Both Hampel and boxplot procedures would declare 	2092	2.04859	1
that all data points in Frequency are outliers!	2093	NA	17
		ļ	
Frequency			
1 2 3 4 5 6 8	9 13	17 18 2	21 61 201

Inliers – Detection example

Applying the three-sigma procedure to identify outliers in 'Frequency'.

- Mean $\bar{x} = 1.29$
- Standard deviation $\sigma = 4.67$
- A value x_k in Frequency is considered outlier if $|x_k \bar{x}| > 3\sigma$ or $x_k > 15.3$

	Chile\$statusquo	Frequency		
19	-1.29617	201		
39	-1.25795	21		
61	-1.21834	18		
137	-1.14049	17		
2074	1.5877	61		
2093	NA	17		

Similar to outliers, inliers are not necessarily bad data that need to be removed – they simply need further investigation.

Missing values - Possible sources

- Sampling
- Data processing errors, e.g. data entry, software engineering, version incompatibility (in apps)
- Data sources
 - 3rd party data, e.g. Tax vs Telco for demographics data
 - 1st party data, e.g. missing required data fields

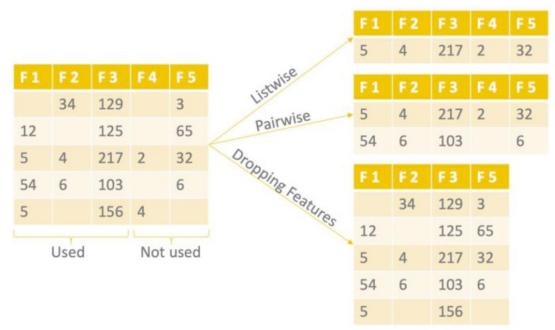
Missing values - Types

record but error file

- **Missing completely at random (MCAR)** the probability of an instance being missing does not depend on known values nor the missing value itself.
- **Missing at random (MAR)** the probability of an instance being missing may depend on known values (of other variables), but not on the variable having missing values.
- Missing not at random (MNAR)
 - the probability of an instance being missing depends on other variables which also have missing values, or
 - The probability of missingness depends on the very variable itself

Missing values - Handling

Deletion methods

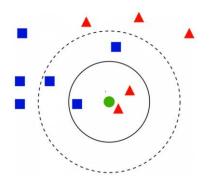


Source: https://www.kdnuggets.com/2020/09/missing-value-imputation-review.html

Missing values - Handling

Single imputation

- A fixed value
- Minimum, maximum, mean (or moving average), median, or most frequent value (for categorical variables)
- Previous or next value (ordered data or time series data)
- K-nearest neighbours
- Regression



Missing values - Handling

Multiple Imputation by Chained Equations (MICE) - Creating multiple replacements for each missing value, multiple versions of the complete dataset

- Step 1. Make a simple imputation (e.g. mean) for all missing values in the dataset
- Step 2. Set missing values in a variable 'A' back to missing
- Step 3. Train a model to predict missing values in 'A' using available values of 'A' as dependent and other variables in the dataset as independent
- Step 4. Predict missing values in 'A' using the trained model in Step 3
- Step 5. Repeat step 2-4 for all other variables with missing values
- Step 6. Repeat step 2-5 until convergence (or a preset maximum number of cycles)
- Step 7. Repeat steps 1-6 multiple times with different random number settings to create different versions of the complete/imputed dataset.

age	job	marital	education	default	balance	housing	loan	contact	duration
59	admin.	married	secondary	no		yes	no	unknown	1042
56	admin.	married	secondary	no		no	no	unknown	1467
41	technician	married	secondary	no		yes	no	unknown	1389
55	services		secondary	no		yes	no	unknown	579
54	admin.		tertiary	no	184	no	no	unknown	673
42	management		tertiary	no	0	yes	yes	unknown	562
56	management		tertiary	no	830	yes	yes	unknown	1201
60	retired		secondary	no	545	yes	no	unknown	1030
37	technician	married	secondary	no	1	yes	no	unknown	608
28	services	single	secondary	no	5090	yes	no	unknown	1297
38	admin.	single	secondary	no	100	yes	no	unknown	786
30	blue-collar	married	secondary	no	309	yes	no	unknown	1574
29	management	married	tertiary	no	199	yes	yes	unknown	1689
46	blue-collar	single	tertiary	no	460	yes	no	unknown	1102
31	technician	single	tertiary	no	703	yes	no	unknown	943
35	management	divorced	tertiary	no	3837	yes	no	unknown	1084
32	blue-collar	single	primary	no	611	yes	no	unknown	541
49	services	married	secondary	no	-8	yes	no	unknown	1119
41	admin.	married	secondary	no	55	yes	no	unknown	1120
49	admin.	divorced	secondary	no	168	yes	yes	unknown	513
28	admin.	divorced	secondary	no	785	yes	no	unknown	442
43	management	single	tertiary	no	2067	yes	no	unknown	756
43	management	divorced	tertiary	no	388	yes	no	unknown	2087
43	blue-collar	married	primary	no	-192	yes	no	unknown	1120

References and further readings

Missing data imputation Tutorial: Introduction to Missing Data Imputation Review: A gentle introduction to imputation of missing values Missing value imputation – a review Multiple imputation by chained equations: what is it and how does it work?