
Lecture 9: Propensity Score Matching

Edmund Malesky, Ph.D. July 13, 2018 Duke University

Matching Strategies

What is Matching

- Tool to improve causal inference by estimating counterfactual
- Constructs artificial comparison group using statistical techniques
 - Assigns one or more nonparticipants to each participant
 - Matches are most similar based on observed characteristics
- Matched nonparticipants are used as the comparison group to estimate counterfactual
- Requires strong assumption: selection only on observables
 - Much Stronger assumption than Diff-in-Diff
 - Impossible to verify, but can assess validity
 - Most serious limitation of matching
- Generally less robust than DD/RDD/Randomized Experiments
 - Use in conjunction, or when others not possible

Motivation

		Study	
Smoking group	Canadian	British	U. S.
Non-smokers	20.2	11.3	13.5
Cigarettes only	20.5	14.1	13.5
Cigars, pipes	35.5	20.7	17.4

DEATH RATES PER 1,000 PERSON-YEARS

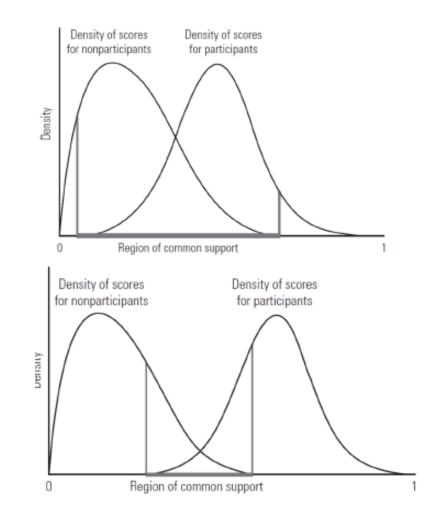
MEAN	AGES,	YEARS
------	-------	-------

		Study	
Smoking group	Canadian	British	U. S.
Non-smokers	54.9	49.1	57.0
Cigarettes only	50.5	49.8	53.2
Cigars and/or pipe	65.9	55.7	59.7

Source: Cochran, 1968.

Curse of Multidimensionality

	Tre	ated units			Ĵ.	Unt	reated units	
Age	Gender	Months unemployed	Secondary diploma		Age	Gender	Months unemployed	Secondary diploma
19	1	3	0 >		24	1	8	1
35	1	12	1	$\Lambda /$	38	0	2	0
41	0	17	1 >	Λ	58	1	7	1
23	1	6	0	IV	21	0	2	1
55	0	21	1	A	34	1	20	0
27	0	4	1	$ \rangle \rangle$	< 41	0	17	1
24	1	8	1 >		46	0	9	0
46	0	3	0		41	0	11	1
33	0	12	1	1.13	19	1	3	0
40	1	2	0		27	0	4	0


- So many things to compare, what is most important for matching?
- Can compare participants/nonparticipants sharing observables
- But with many variables, hard to find good match
- Often tough to find two identical households
- Propensity score matching solves this problem

Propensity Score Matching (PSM)

- Matches on *probability of participation* in intervention, based on <u>observables</u>
- *Propensity Score, or P(X):* probability that unit will participate in program based on observable characteristics
 - Single # summarizes all observables influencing participation
- PSM matches participants to nonparticipants with "closest" P(X)
- Validity of PSM depends on two key assumptions
 - **1.** <u>Conditional independence:</u> $(Y_i^T, Y_i^C) \perp T_i \mid X_i$
 - 2. <u>Common support</u>: $0 < P(T_i = 1|X_i)$
- **1.** <u>**Conditional independence:**</u> given set of observable covariates X that are not affected by treatment, potential outcomes Y are independent of (orthogonal to) treatment assignment T
- 2. <u>Common Support</u>: Uptake of program entirely based on observables

PSM & Common Support

- Common support ensures participants have nonparticipants with "close" P(X)
- Lack of common support appears in tails of distributions
- Larger sample of eligible nonparticipants helps matching
- Poor common support can induce bias in matching estimator
 - E.g., if no matches may drop nonrandom subset of participants

Steps to Implement PSM

- 1. Use comparable surveys of participants & nonparticipants
- 2. Pool samples & estimate probability of individual participating based on observables i.e., propensity score, or P(X)
 - Specifically, we use a an adapted version of the OLS regression model that you had in section 1 of the class. There are two differences:
 - i. The dependent variable (treatment) =1 if participant, and =0 if nonparticipant.
 - ii. We use a *logit* or *probit* regression to estimate probability of participation for each member of the treatment group, based on observable.
- 3. Restrict sample to common support
- 4. Sort data by propensity score P(X).
 - For each participant, locate nonparticipant(s) with similar P(X)
- 5. Compare Y (DV) for participants & their twins (matched comparison units).
- 6. Difference of average outcomes = effect on participants
- 7. Mean of individual impacts = estimated average treatment effect

Multiple Techniques for PSM

Various techniques for matching participants and nonparticipants

- 1. nearest neighbor matching
- 2. caliper & radius matching
- 3. stratification & interval matching
- 4. kernel & local linear matching
- 5. genetic matching
- 6. Entropy balancing

While they vary in flavor and precision, they all generate pretty much the same matches.

Getting PSM Right

- PSM only useful when observables believed to affect participation
 - Depends on targeting rules for intervention and factors for self-selection
 - Impossible to prove
 - Must understand context of selection; use surveys to evaluate
- Only as good as background characteristics used
 - The more data to match with the better; many Xs crucial
- Beware of ex-post matching
 - Matching must be done using baseline characteristics
 - Danger with ex-post surveys: participation may affect Xs
- Can combine matching with other methods, such as Diff-in-Diff
- Addresses selection bias due to time-invariant unobservables

PSM vs Randomization

- Randomization does not require the *untestable* assumption of independence conditional on observables
- PSM requires large samples and good data:
 - 1. Ideally, the same data source is used for participants and non-participants
 - 2. Participants and non-participants have access to similar institutions and markets, and
 - 3. The data include *X* variables capable of identifying program participation and outcomes.

Back to the HISP Example

Dependent Variable: Enrolled = 1					
Explanatory variables / characteristics	Coefficient				
Head of household's age (years)	-0.022**				
Spouse's age (years)	-0.017**				
Head of household's education (years)	-0.059**				
Spouse's education (years)	-0.030**				
Head of household is female = 1	-0.067				
Indigenous = 1	0.345**				
Number of household members	0.216**				
Dirt floor = 1	0.676**				
Bathroom = 1	-0.197**				
Hectares of land	-0.042**				
Distance to hospital (km)	0.001*				
Constant	0.664**				

Table 7.1 Estimating the Propensity Score Based on Observed Characteristics

Source: Authors.

Note: Probit regression. The dependent variable is 1 if the household enrolled in HISP, and 0 otherwise. The coefficients represent the contribution of each listed explanatory variable / characteristic to the probability that a household enrolled in HISP.

* Significant at the 5 percent level; ** Significant at the 1 percent level. Source: Gertler et al., 2011.

Health Insurance Subsidy Example

Table 7.2 Case 7—HISP Impact Using Matching (Comparison of Means)

		Matched		
	Enrolled	comparison	Difference	t-stat
Household health				
expenditures	7.8	16.1	-8.3	-13.1

Table 7.3 Case 7—HISP Impact Using Matching (Regression Analysis)

	Multivariate linear regression
Estimated impact on household	-8.3**
health expenditures	(0.63)

Source: Authors.

Note: Standard errors are in parentheses.

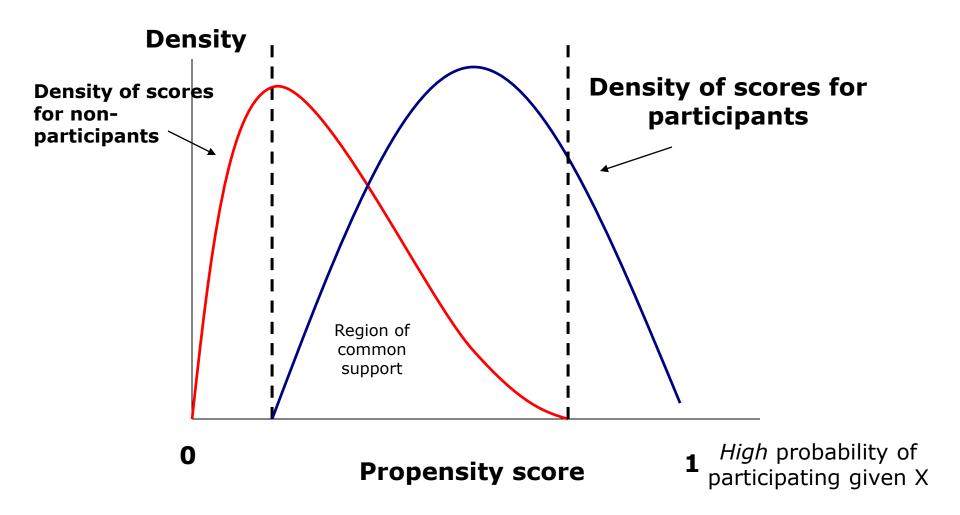
** Significant at the 1 percent level.

Source: Gertler et al., 2011.

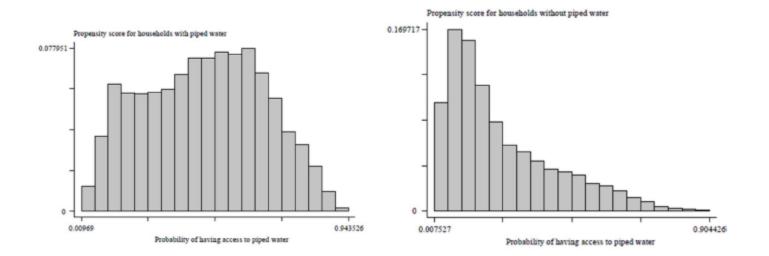
Jalan and Ravillion (2003)

- Each year, 4 million children under 5 die from diarrhea
 - Main cause: unsafe drinking water
- Paper examines effect of piped water in India
 - 1.5 MM child deaths/year due to diseases related to poor water
 - Highest number in world
- Finds lower prevalence/duration of diarrhea if piped water
- But health gains bypass families in poverty or w/ poorly educated mother
- Need complementary inputs, such as knowing to boil & store safely

PSM in Practice


- To estimate the propensity score, authors used:
- Village level characteristics
 - Including: Village size, amount of irrigated land, schools, infrastructure (bus stop, railway station)
- Household variables
 - Including: Ethnicity / caste / religion, asset ownership (bicycle, radio, thresher), educational background of HH members
- Are there variables which can not be included?
 - Only using cross-section, so no variables influenced by project

Estimating Propensity Score for Access to Clean Water


Logit regression for piped water

	Coefficient	1-statistic
Village variables	000121-2-	100,000
Village size (log)	0.08212	4.269
Proportion of gross cropped area which is irrigated: > 0.75	-0.04824	-1.185
Proportion of gross cropped area which is irrigated: 0.5-0.75	0.19399	4.178
Whether village has a day care center	-0.07249	-2.225
Whether village has a primary school	-0.08136	-1.434
Whether village has a middle school	-0.09019	-2.578
Whether village has a high school	0.26460	7.405
Female to male students in the village	0.10637	3.010
Female to male students for minority groups	-0.07661	-2.111
Main approachable road to village: pucca road	0.19441	3.637
jeepable/kuchha road	-0.00163	-0.033
Whether bus-stoop is within the village	0.11423	2.951
Whether railway station is within the village	0.00920	0.179
Whether there is a post-office within the village	0.02193	0.550
Whether the village has a telephone facility	0.33059	9.655
Whether there is a community TV center in the village	0.09859	2.661
Whether there is a library in the village	-0.04153	-1.116
Whether there is a bank in the village	0.19084	4.655
Whether there is a market in the village	0.31690	6.092
Student teacher ratio in the village	0.00242	5.295
Household variables		
Whether household belongs to the Scheduled Tribe	-0.21288	-4.203
Whether household belongs to the Scheduled Caste	-0.01045	-0.288
Whether it is a Hindu household	-0.24195	-1.709
Whether it is a Muslim household	-0.21631	-1.427
Whether it is a Christian household	0.40367	2.426
Whether it is a Sikh household	-0.86645	-4.531
Household size	0.00337	0.571
Utilization of landholdings: used for cultivation?	0.17109	1.914
Whether the house belongs to the household	-0.18988	-2.854
Whether the household owns other property	0.00181	0.044
Whether the household has a bicycle	-0.26514	-8.243
Whether the household has a sewing machine	0.01183	0.252
Whether the household owns a thresher	-0.05790	-0.577
Whether the household owns a winnower	0.21842	1.820
Whether the household owns a bullock-curt	-0.25900	-5.430
Whether the household owns a radio	0.01036	0.251
Whether the household owns a TV	0.08095	1.335
Whether the household owns a fan	0.01336	0.321
Whether the household owns any livestock	-0.07780	-2.339
F. F		

Source: Jalan & Ravallion, 2003.

Common Support Assumption

Source: Jalan & Ravallion, 2003.

Potential Unobserved Factors

- The behavioral factors importance put on sanitation and behavioral inputs – are also likely correlated with whether a HH has piped water
- However, there are no behavioral variables in data: water storage, soap usage, latrines
 - These are unobserved factors NOT included in propensity score

Results of Clean Water

	Prevalence of diarri	hea	Duration of illness	
	Mean for those with piped water (st. dev.)	Impact of piped water (st. error)	Mean for those with piped water (st. dev.)	Impact of piped water (st. error)
Full sample	0.0108	-0.0023*	0.3254	-0.0957*
	(0.046)	(0.001)	(1.650)	(0.021)
Stratified by househo	old income per capita (q	wintiles)		
1 (poorest)	0.0155	0.0032*	0.4805	0.0713
	(0.055)	(0.001)	(2.030)	(0.053)
2	0.0136	0.0007	0.4170	0.0312
	(0.051)	(0.001)	(1.805)	(0.051)
3	0.0083	-0.0039*	0.2636	-0.1258*
	(0.038)	(0.001)	(1.418)	(0.042)
4	0.0100	-0.0036*	0.3195	-0.1392*
	(0.044)	(0.001)	(1,703)	(0.048)
5	0.0076	-0.0068*	0.1848	-0.2682*
	(0.042)	(0.001)	(1.254)	(0.036)
Stratified by highest	education level of a fen	nale member		
Illiterate	0.0131	-0.0000	0.3588	-0.0904*
	(0.053)	(0.001)	(1.710)	(0.036)
At most primary	0.0112	-0.0015	0.3502	-0.0465
school educated	(0.045)	(0.001)	1.739)	(0.036)
At most	0.0074	-0.0065*	0.2573	-0.1708*
matriculation educated	(0.038)	(0.001)	(1.476)	(0.039)
Higher secondary	0.0050	-0.0080*	0.1880	-0.2077*
or more	(0.027)	(0.002)	(1.158)	(0.076)

Impacts of piped water on diarrhea prevalence and duration for children under five

*Indicates significance at the 5% level or lower.

Source: Jalan & Ravallion, 2003.

Impact of Piped Water on Diarrhea

Child-health impacts of piped water by income and education

	Illiterate	Illiterate		<i>(</i>	At most matrice	lation	Higher secondar	ry or more
	Prevalence of diarrhea	Duration of illness	Prevalence of diarrhea	Duration of illness	Prevalence of diarrhea	Duration of illness	Prevalence of diarrhea	Duration of illness
1 (poorest quintile)	0.0100*	0.1028	0.0010	0.0548	-0.0118*	-0.1091	Small 5	Sample
	(0.002)	(0.089)	(0.002)	(0.094)	(0.003)	(0.132)		
2	0.0057*	0.0777	0.0013	0.1061	-0.0121*	-0.2580*	Small 5	Sample
	(0.003)	(0.083)	(0.002)	(0.083)	(0.002)	(0.087)		
3	-0.0038*	-0.1503*	-0.0008	0.0056	-0.0069*	-0.1659*	Small 5	Sample
	(0.002)	(0.069)	(0.002)	(0.081)	(0.002)	(0.059)		100 100 100 100 100 100 100 100 100 100
4	-0.0062*	-0.2224*	-0.0041*	-0.1691	0.0008	-0.0186	Small 5	sample
	(0.002)	(0.097)	(0.002)	(0.070)	(0.003)	(0.091)		
5	-0.0075*	-0.2932*	-0.0051*	-0.2435*	-0.0063*	-0.2578*	-0.010*	-0.2637*
	(0.000)	(0.045)	(0.002)	(0.075)	(0.002)	(0.008)	(0.003)	(0.085)

Note: Figures in parentheses are the respective standard errors.

*Indicates significance at 5% or lower.

Impact of Water Privatization on Child Mortality

	FULL SAMPLE			USING OBSERVATIONS ON COMMON SUPPORT			KERNEL MATCHING ON COMMON SUPPORT [*]
	(1)	(2)	(3)	(4)	(5)	(6)	(7)
Private water services (=1)	334 (.169)** [.157]** [.195]*	320 (.170)* [.163]** [.203]	283 (.170)* [.162]* [.194]	540 (.177)*** [.191]*** [.261]**	541 (.178)*** [.198]*** [.274]**	525 (.178)*** [.195]*** [.266]**	604 (.168)***
%Δ in mortality rate Other covariates:	-5.3	-5.1	-4.5	-8.6	-8.6	-8.4	-9.7
Real GDP per capita		.007 (.005) [.006] [.007]	.009 (.006) [.006] [.007]		.005 (.006) [.007] (.007]	.006 (.006) [.007] [.008]	
Unemployment rate		- 555	- 696		- 778	- 896	
Income inequality		5.171 (2.868)* [3.468]	5.085 (2.880)* [3.445]		2.932 (2.907) [3.314]	3.052 (2.926) [3.289] [3.838]	
Public spending per capita		[3.696] 028 (.038) [.055] [.054]	(3.691) 035 (.038) [.055] [.055]		(3.833) 068 (.039)* [.059] (.049)	(.039)* [.059] [.050]	
Local government by Radical party (=1)			.482 (.267)* [.281]* (.288)*			.166 (.284) [.301] (.365)	
Local government by Peronist party (=1)			202 (.191) [.202] [.254]			168 (.193) [.230] [.309]	
R ⁰ Observations	.1227 4,732	.1256 4,597	.1272 4,597	.1390 3,970	.1415 3,870	.1420 3,870	3,970

Source: Galiani et al, 1995.

Lessons on Matching Methods

- Typically used when neither randomization, RD or other quasi experimental options are not possible
 - Case 1: no baseline. Can do ex-post matching
 - Dangers of ex-post matching:
 - Matching on variables that change due to participation (i.e., endogenous)
 - What are some variables that won't change?
- Matching helps control only for OBSERVABLE differences, not unobservable differences

More Lessons on Matching Methods

- Matching becomes much better in combination with other techniques, such as:
 - Exploiting baseline data for matching and using difference-in-difference strategy
 - If an assignment rule exists for project, can match on this rule
- Need good quality data
 - Common support can be a problem if two groups are very different

Design	When to use	Advantages	Disadvantages
Randomization	 Whenever feasible When there is variation at the individual or community level 	 Gold standard Most powerful 	 Not always feasible Not always ethical
Randomized Encouragement Design	When an intervention is universally implemented	 Provides exogenous variation for a subset of beneficiaries 	 Only looks at sub- group of sample Power of encouragement design only known ex post
Regression Discontinuity	If an intervention has a clear, sharp assignment rule	 Project beneficiaries often must qualify through established criteria 	 Only look at sub- group of sample Assignment rule in practice often not implemented strictly
Difference-in- Differences	 If two groups are growing at similar rates Baseline and follow-up data are available 	Eliminates fixed differences not related to treatment	 Can be biased if trends change Ideally have 2 pre- intervention periods of data
Matching	When other methods are not possible	Overcomes observed differences between treatment and comparison	Assumes no unobserved differences (often implausible)