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Abstract 
This guide1 for more formal discussion of independence and the assumptions necessary to 
estimate causal effects. describes ten distinct types of causal effect researchers can be 
interested in estimating. As discussed in our guide to causal inference, simple 
randomization allows one to produce estimates of the average of the unit level causal effects 
in a sample. This average causal effect or average treatment effect (ATE) is a powerful 
concept because it is one solution to the problem of not observing all relevant 
counterfactuals. Yet, it is not the only productive engagement with this problem. In fact, 
there are many different types of quantities of causal interest. The goal of this guide is to 
help you choose estimands (a parameter of interest) and estimators (procedures for 
calculating estimates of those parameters) that are appropriate and meaningful for your 
data. 

1 Average Treatment Effects 
We begin by reviewing how, with randomization, a simple difference-of-means provides an 
unbiased estimate of the ATE. We take extra time to introduce some common statistical 
concepts and notation used throughout this guide. 

First we define a treatment effect for an individual observation (a person, household, city, 

etc.) as the difference between that unit’s behavior under treatment (Yi(1))(Yi(1)) and 

control (Yi(0))(Yi(0)): 

τi=Yi(1)−Yi(0)τi=Yi(1)−Yi(0) 

Since we can only observe either Yi(1)Yi(1) or Yi(0)Yi(0) the individual treatment effect is 

unknowable. Now let DiDi be an indicator for whether we observe an observation under 

treatment or control. If treatment is randomly assigned, DiDi is independent, not only of 
potential outcomes but also of any covariates (observed and unobserved) that might predict 

also those outcomes ((Yi(1),Yi(0),Xi⊥⊥Di))((Yi(1),Yi(0),Xi⊥⊥Di)).2 

Suppose our design involves mm units under treatment and N−mN−m under control. 
Suppose we were to repeatedly reassign treatment at random many times and each time 
calculate the difference of means between treated and control groups and then to record this 
value in a list. The average of the values in that list will be the same as the difference of the 
means of the true potential outcomes had we observed the full schedule of potential 
outcomes for all observations.3 Another way to say this characteristic of the average 
treatment effect and the estimator of it, is to say that the difference of observed means is an 
unbiased estimator of the average causal treatment effect. 

http://egap.org/methods-guides/10-types-treatment-effect-you-should-know-about
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn1
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn2
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn3


Trường Chính sách công và Quản lý Fulbright Đánh giá chính sách 
Bài đọc 

10 Types of Treatment Effect You Should 
Know About 

 

2 

ATE≡1N∑Ni=1τi=∑N1Yi(1)N−∑N1Yi(0)NATE≡1N∑i=1Nτi=∑1NYi(1)N−∑1NYi(0)N 

And we often estimate the ATE using the observed difference in means:4 

ATEˆ=∑m1ZiYim−∑Nm+1(1−Zi)YiN−mATE^=∑1mZiYim−∑m+1N(1−Zi)YiN−m 

Statistical inference about the estimated ATE requires that we know how it will vary across 
randomizations. It turns out that we can write the variance of the ATE across 
randomizations as follows: 

V(ATE)=NN−1[V(Yi(1))m+V(Yi(0))N−m]−1N−1[V(Yi(1))+V(Yi(0))−2∗Cov(Yi(1),Yi(0))]V
(ATE)=NN−1[V(Yi(1))m+V(Yi(0))N−m]−1N−1[V(Yi(1))+V(Yi(0))−2∗Cov(Yi(1),Yi(0))] 

and estimate this quantity from the sample estimates of the variance in each group.5 

A linear model regressing the observed outcome YiYi on a treatment indicator DiDi provides 
a convenient estimator of the ATE (and with some additional adjustments, the variance of 
the ATE): 

Yi=Yi(0)∗(1−Di)+Yi(1)∗Di=β0+β1Di+uYi=Yi(0)∗(1−Di)+Yi(1)∗Di=β0+β1Di+u 

since we can rearrange terms so that β0β0 estimates the average among control 

observations (Yi(0)∣Di=0)(Yi(0)∣Di=0) and β1β1 estimates the differences of 

means (Yi(1)∣Di=1)–(Yi(1)∣Di=0)(Yi(1)∣Di=1)–(Yi(1)∣Di=0). In the code below, we create a 
sample of 1,000 observations and randomly assign a treatment Di with a constant unit effect 
to half of the units. We estimate the ATE using ordinary least squares (OLS) regression to 
calculate the observed mean difference. Calculating the means in each group and taking 
their difference would also produce an unbiased estimate of the ATE. Note that the 
estimated ATE from OLS is unbiased, but the errors in this linear model are assumed to be 
independent and identically distributed. When our treatment effects both the average value 
of the outcome and the distribution of responses, this assumption no longer holds and we 
need to adjust the standard errors from OLS using a Huber-White sandwich estimator to 
obtain the correct estimates (based on the variance of the ATE) for statistical 
inference.6 Finally, we also demonstrate the unbiasedness of these estimators through 
simulation. 
 

set.seed(1234) # For replication  

N = 1000 # Population size  

Y0 = runif(N) # Potential outcome under control condition  

Y1 = Y0 + 1 # Potential outcome under treatment condition  

D = sample((1:N)%%2) # Treatment: 1 if treated, 0 otherwise  

Y = D*Y1 + (1-D)*Y0 # Outcome in population  

samp = data.frame(D,Y)  

 

ATE = coef(lm(Y~D,data=samp))[2] #same as with(samp,mean(Y[Z==1])-mean(Y[Z==0

]))  

 

# SATE with Neyman/Randomization Justified Standard Errors  

# which are the same as OLS standard errors when no covariates or blocking  

library(lmtest)  

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn4
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn5
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library(sandwich)  

fit<-lm(Y~D,data=samp)  

coef(summary(fit))["D",1:2] 

##   Estimate Std. Error  

## 0.99282939 0.01842545 

ATE.se<-coeftest(fit,vcovHC(fit,type="HC2"))["D",2]  

# same as with(samp,sqrt(var(Y[D==1])/sum(D)+var(Y[D==0])/(n-sum(D)))  

 

# Assess unbiasedness and simulate standard errors  

getATE<-function() { 

  D = sample((1:N)%%2) # Treatment: 1 if treated, 0 otherwise  

  Y = D*Y1 + (1-D)*Y0  

  coef(lm(Y~D))[["D"]]  

}  

 

manyATEs<-replicate(10000,getATE())  

 

## Unbiasedness:  

c(ATE=mean(Y1)-mean(Y0), ExpEstATE=mean(manyATEs))  

##       ATE ExpEstATE  

##  1.000000  1.000068 

## Standard Error  

### True SE formula  

V<-var(cbind(Y0,Y1))  

varc<-V[1,1]  

vart<-V[2,2]  

covtc<-V[1,2]  

n<-sum(D)  

m<-N-n  

varestATE<-((N-n)/(N-1))*(vart/n) + ((N-m)/(N-1))* (varc/m) + (2/(N-1)) * cov

tc  

 

### Compare SEs  

c(SimulatedSE= sd(manyATEs), TrueSE=sqrt(varestATE), ConservativeSE=ATE.se)  

##    SimulatedSE         TrueSE ConservativeSE  

##     0.01841534     0.01842684     0.01842545 
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2 Conditional Average Treatment 
Effects 
The problem with looking at average treatment effects only is that it takes attention away 
from the fact that treatment effects might be very different for different sorts of people. 
While the “fundamental problem of causal inference” suggests that measuring causal effects 
for individual units is impossible, making inferences on groups of units is not. 

Random assignment ensures that treatment is independent of potential outcomes and any 
(observed and unobserved) covariates. Sometimes, however, we have additional 
information about the experimental units as they existed before the experiment was fielded, 

say XiXi, and this information can can help us understand how treatment effects vary across 
subgroups. For example, we may suspect that men and women respond differently to 
treatment, and we can test for this hetorogeneity by estimating conditional ATE for each 

subgroup separately (CATE=E(Yi(1)−Yi(0)∣Di,Xi))(CATE=E(Yi(1)−Yi(0)∣Di,Xi)). If our 
covariate is continous, we can test its moderating effects by interacting the continous 
variable with the treatment. Note, however, that the treatment effect is now conditional on 
both treatment status and the value of the conditioning variable at which the effect is 
evaluated and so we must adjust our interpretation and standard errors accordingly.7 
A word of warning: looking at treatment effects across dimensions that are themselves 
affected by treatment is a dangerous business and can lead to incorrect inferences. For 
example if you wanted to see how administering a drug led to health improvements you 
could look separately for men and women, but you could not look separately for those that 
in fact took the drug and those that did not (this is an example of inference for compliers 
which requires separate techniques described in point 4 below). 

3 Intent-to-Treat Effects 
Outside of a controlled laboratory setting, the subjects we assign to treatment often are not 
the same as the subjects who actually receive the treatment. When some subjects assigned 
to treatment fail to receive it, we call this an experiment with one-sided non-compliance. 
When additionally, some subjects assigned to control also receive the treatment, we say 
there is two-sided non-compliance. For example, in a get-out-the-vote experiment, some 
people assigned to receive a mailer may not receive it. Perhaps they’ve changed addresses or 
never check their mail. Similarly, some observations assigned to control may receive the 
treatment. Perhaps they just moved in, and the previous tenant’s mail is still arriving. 

When non-compliance occurs, the receipt of treatment is no longer independent of potential 
outcomes and confounders. The people who actually read their mail probably differ in a 
number of ways from the people who throw their mail away (or read their neighbors’ mail) 
and these differences likely also effect their probability of voting. The difference-of-means 
between subjects assigned to treatment and control no longer estimates the ATE, but 
instead estimates what is called an intent-to-treat effect (ITT). We often interpret the ITT as 
the effect of giving someone the opportunity to receive treatment. The ITT is particularly 
relevant then for assessing programs and interventions with voluntary participation. 

In the code below, we create some simple data with one-sided non-compliance. Although 
the true treatment effect for people who actually received the treatment is 2, our estimated 
ITT is smaller (about 1) because only some of the people assigned to treatment actually 
receive it. 

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn7
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set.seed(1234) # For replication 

n = 1000 # Population size  

Y0 = runif(n) # Potential outcome under control condition  

C = sample((1:n)%%2) # Whether someone is a complier or not  

Y1 = Y0 + 1 +C # Potential outcome under treatment  

Z = sample((1:n)%%2) # Treatment assignment  

D = Z*C # Treatment Uptake  

Y = D*Y1 + (1-D)*Y0 # Outcome in population  

samp = data.frame(Z,Y) 

ITT<-coef(lm(Y~Z,data=samp))[2] 

4 Complier Average Treatment Effects 
What if you are interested in figuring out the effects of a treatment on those people who 
actually took up the treatment and not just those people that were administered the 
treatment? For example what is the effect of radio ads on voting behavior for those people 
that actually hear the ads? 

This turns out to be a hard problem (for more on this see this guide). The reasons for non-
compliance with treatment can be thought of as an omitted variable. While the receipt of 
treatment is no-longer independent of potential outcomes, the assignment of treatment 
status is. As long as random assignment had some positive effect on the probability of 
receiving treatment, we can use it as an instrument to identify the effects of treatment on 
the sub-population of subjects who comply with treatment assignment. 

Following the notation of Angrist and Pischke,8 let ZZ be an indicator for whether an 

observation was assigned to treatment and DiDi indicate whether that subject actually 
received the treatment. Experiments with non-compliance are composed of always-takers 

(Di=1Di=1, regardless of ZiZi), never-takers (Di=0Di=0 regardless of ZiZi), and compliers 

(Di=1Di=1 when Zi=1Zi=1 and 00 when Zi=0Zi=0).9 We can estimate a complier average 
causal effect (CACE), sometimes also called a local average treatment effect (LATE), by 

weighting the ITT (the effect of ZZ on YY) by the effectiveness of random assignment on 

treatment uptake (the effect of ZZ on DD). 

CACE=EffectofZonYEffectofZonD=E(Yi∣Zi=1)−E(Yi|Zi=0)E(Di|Zi=1)−E(Di|Zi=0)CACE=Eff
ectofZonYEffectofZonD=E(Yi∣Zi=1)−E(Yi|Zi=0)E(Di|Zi=1)−E(Di|Zi=0) 

The estimator above highlights the fact that the ITT and CACE converge as we approach full 
compliance. Constructing standard errors for ratios is somewhat cumbersome and so we 
usually estimate a CACE using two-stage-least-squares regression with random 

assignment, ZiZi, serving as instrument for treatment receipt DiDi in the first stage of the 
model. This approach simplifies the estimation of standard errors and allows for the 
inclusion of covariates as additional instruments. We demonstrate both strategies in the 
code below for data with two-sided non-compliance. Note, however, that when instruments 
are weak (e.g. random assignment had only a small effect on the receipt of treatment), 
instrumental variable estimators and their standard errors can be biased and inconsistent.10 

set.seed(1234) # For replication  

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn8
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn9
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn10
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n = 1000 # Population size  

Y0 = runif(n) # Potential outcome under control condition  

Y1 = Y0 + 1 # Potential outcome under treatment  

Z = sample((1:n)%%2) # Treatment assignment  

pD<-pnorm(-1+rnorm(n,mean=2*Z)) # Non-compliance  

D<-rbinom(n,1,pD) # Treatment receipt with non-compliance  

Y = D*Y1 + (1-D)*Y0 # Outcome in population  

samp = data.frame(Z,D,Y)  

 

# IV estimate library(AER) CACE = coef(ivreg(Y ~ D | Z, data = samp))[2]  

 

# Wald Estimator ITT<-coef(lm(Y~Z,data=samp))[2] ITT.D<-coef(lm(D~Z,data=samp

))[2] CACE.wald<-ITT/ITT.D 

5 Population and Sample Average 
Treatment Effects 
Often we want to generalize from our sample to make statements about some broader 

population of interest.11 Let SiSi be an indicator for whether an subject is in our sample. The 
sample average treatment effect (SATE) is defined simply 

as E(Yi(1)−Yi(0)|Si=1)E(Yi(1)−Yi(0)|Si=1) and the 

population E(Yi(1)−Yi(0))E(Yi(1)−Yi(0)). With a large random sample from a well-defined 
population with full compliance with treatment, our SATE are PATE are equal in 
expectation and so a good estimate for one (like a difference of sample means) will be a good 
estimate for the other.12 
In practice, the experimental pool may consist of a group of units selected in an unknown 
manner from a vaguely defined population of such units and compliance with treatment 
assignment may be less than complete. In such cases our SATE may diverge from the PATE 
and recovering estimates of each becomes more complicated. Imai, King, and Stuart (2008) 
decompose the divergence between these estimates into error that arises from sample 
selection and treatment imbalance. Error from sample selection arises from different 
distributions of (observed and unobserved) covariates in our sample and population. For 
example people in a medical trial often differ from the population for whom the drug would 
be available. Error from treatment imbalance reflects differences in covariates between 
treatment and control groups in our sample, perhaps because of non-random assignment 
and/or non-compliance. 

While there are no simple solutions to the problems created by such error, there are steps 
you can take in both the design of your study and the analysis of your data to address these 
challenges to estimating the PATE or CACE/LATE. For example, including a placebo 
intervention provides additional information on the probability of receiving treatment, that 
can be used to re-weight the effect of actually receiving it (e.g Nickerson (2008)) in the 
presence of non-compliance. One could also use a model to re-weighting observations to 
adjust for covariate imbalance and the unequal probability of receiving the treatment, both 
within the sample and between a sample and the population of interest.13 

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn11
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn12
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn13
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In the code below, we demonstrate several approaches to estimating these effects 
implemented in the CausalGAM package for R.14 Specifically, the package produces 
regression, inverse-propensity weighting (IPW), and augmented inverse-propensity 
weighting estimates of the ATE. Combining regression adjustment with IPW, the AIPW has 
the feature of being “doubly robust” in that the estimate is still consistent even if we have 
incorrectly specified either the regression model or the propensity score for the probability 
weighting. 

# Example adapted from ?estimate.ATE  

library(CausalGAM)  

## ## 

## ## CausalGAM Package 

## ## Copyright (C) 2009 Adam Glynn and Kevin Quinn 

set.seed(1234) # For replication  

n = 1000 # Sample size  

X1 = rnorm(n) # Pre-treatment covariates  

X2 = rnorm(n)  

p = pnorm(-0.5 + 0.75*X2) # Unequal probabilty of Treatment  

D = rbinom(n, 1, p) # Treatment  

Y0 = rnorm(n) # Potential outcomes  

Y1 = Y0 + 1 + X1 + X2  

Y = D*Y1 + (1-D)*Y0 # Observed outcomes  

samp = data.frame(X1,X2,D,Y)  

 

# Estimate ATE with AIPW, IPW, Regression weights  

ATE.out <- estimate.ATE(pscore.formula = D ~ X1 +X2,  

                        pscore.family = binomial,  

                        outcome.formula.t = Y ~ X1  

                        +X2,  

                        outcome.formula.c = Y ~ X1  

                        +X2,  

                        outcome.family = gaussian,  

                        treatment.var = "D",  

                        data=samp,  

                        divby0.action="t",  

                        divby0.tol=0.001,  

                        var.gam.plot=FALSE, nboot=50) 

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn14
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6 Average Treatment Effects on the 
Treated and the Control 
To evaluate the policy implications of a particular intervention, we often need to know the 
effects of the treatment not just on the whole population but specifically for those to whom 
the treatment is administered We define the average effects of treatment among the treated 
(ATT) and the control (ATC) as simple counter-factual comparisons: 

ATT=E(Yi(1)−Yi(0)|Di=1)=E(Yi(1)|Di=1)−E(Yi(0)|Di=1)ATT=E(Yi(1)−Yi(0)|Di=1)=E(Yi(1)
|Di=1)−E(Yi(0)|Di=1) 

ATC=E(Yi(1)−Yi(0)|Di=0)=E(Yi(1)|Di=0)−E(Yi(0)|Di=0)ATC=E(Yi(1)−Yi(0)|Di=0)=E(Yi(1)
|Di=0)−E(Yi(0)|Di=0) 

Informally, the ATT is the effect for those that we treated; ATC is what the effect would be 
for those we did not treat. 

When treatment is randomly assigned and there is full compliance, 

the ATE=ATT=ATCATE=ATT=ATC, 

since E(Yi(0)∣Di=1)=E(Yi(0)∣Di=0)E(Yi(0)∣Di=1)=E(Yi(0)∣Di=0) and E(Yi(1)∣Di=0)=E(Yi(1
)∣Di=1)E(Yi(1)∣Di=0)=E(Yi(1)∣Di=1) Often either because of the nature of the intervention 
or specific concerns about cost and ethnics, treatment compliance is incomplete and the 
ATE will not in general equal the ATT or ATC. In such instances, we saw in the previous 
section that we could re-weight observations by their probability of receiving the treatment 
to recover estimates of the ATE. The same logic can be extended to produce estimates of the 
ATT and ATC in both our sample and the population.15 
Below, we create an case where the probability of receiving treatment varies and but can be 
estimated using a propensity score model.16 The predicted probabilities from this model are 
then used as weights to recover the estimates of the ATE, ATT, and ATC. Inverse propensity 
score weighting attempts to balance the distribution of covariates between treatment and 
control groups when estimating the ATE. For the ATT, this weighting approach treats 
subjects in the the treated group as a sample from the target population (people who 
received the treatment) and weights subjects in the control by their odds of receiving the 
treatment. In a similar fashion, the estimate of the ATC weights treated observations to look 
like controls. The quality (unbiasedness) of these estimates is inherently linked to the 
quality of our models for predicting the receipt of treatment. Inverse propensity score 
weighting and other procedures produce balance between treatment and control groups on 
observed covariates, but unless we have the “true model” (and we almost never know the 
true model) the potential for bias from unobserved covariates remains and should lead us to 
interpret our the estimated ATT or ATC in light of the quality of the model that produced it. 

set.seed(1234) # For replication 

n = 1000 # Sample size  

X1 = rnorm(n) # Pre-treatment covariates  

X2 = rnorm(n)  

p = pnorm(-0.5 + 0.75*X2) # Unequal probabilty of Treatment  

D = rbinom(n, 1, p) # Treatment  

Y0 = rnorm(n) # Potential outcomes  

Y1 = Y0 +1 +X1 +X2  

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn15
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Y = D*Y1 + (1-D)*Y0 # Observed outcomes  

samp = data.frame(X1,X2,D,Y)  

# Propensity score model  

samp$p.score<- 

predict(glm(D~X1+X2,samp,family=binomial),type="response")  

 

 

# Inverse Propability Weights  

samp$W.ipw<-with(samp, ifelse(D==1,1/p.score,1/(1-p.score)))  

samp$W.att<-with(samp, ifelse(D==1,1,p.score/(1-p.score)))  

samp$W.atc<-with(samp, ifelse(D==1,(1-p.score)/p.score,1))  

 

# IPW: ATE, ATT, ATC  

ATE.ipw<-coef(lm(Y~D,data=samp,weights=W.ipw))[2] 

ATT.ipw<-coef(lm(Y~D,data=samp,weights=W.att))[2]  

ATC.ipw<-coef(lm(Y~D,data=samp,weights=W.atc))[2] 

7 Quantile Average Treatment Effects 
The ATE focuses on the middle, in a way on the effect for a typical person, but we often also 
care about the distributional consequences of our treatment. We want to know not just 
whether our treatment raised average income, but also whether it made the distribution of 
income in the study more or less equal. 

Claims about distributions are difficult. Even though we can estimate the ATE from a 
difference of sample means, in general, we cannot make statements about the joint 

distribution of potential outcomes (F(Yi(1),Yi(0)))(F(Yi(1),Yi(0))) without further 
assumptions. Typically, these assumptions either limit our analysis to a specific sub-
population17 or require us to assume some form of rank invariance in the distribution of 
responses to treatment effects18 and Frölich and Melly (2010) for fairly concise discussions 
of these issues and Abbring and Heckman (Abbring, Jaap H, and James J Heckman. 2007. 
“Econometric Evaluation of Social Programs, Part III: Distributional Treatment Effects, 
Dynamic Treatment Effects, Dynamic Discrete Choice, and General Equilibrium Policy 
Evaluation.” Handbook of Econometrics 6. Elsevier: 5145–5303.) (2007) for a thorough 
overview. 
If these assumptions are justified for our data, we can obtain consistent estimates of 
quantile treatment effects (QTE) using quantile regression.19 Just as linear regression 
estimates the ATE as a difference in means (or, when covariates are used in the model, from 
a conditional mean), quantile regression fits a linear model to a conditional quantile and 
this model can then be used to estimates the effects of treatment for that particular quantile 
of the outcome. The approach can be extended to include covariates and instruments for 
non-compliance. Note that the interpretation of the QTE is for a given quantile, not an 
individual at that quantile. 

Below we show a case where the ATE is 0, but the treatment effect is negative for low 
quantiles of the response and positive for high quantiles. Estimating quantile treatment 

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn17
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn18
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effects provide another tool for detecting heterogeneous effects and allow us to describe 
distributional consequences of our intervention. These added insights come at the cost of 
requiring more stringent statistical assumptions of our data and more nuanced 
interpretations of our results. 

set.seed(1234) # For replication 

n = 1000 # Population size 

Y0 = runif(n) # Potential outcome under control condition 

Y1= Y0  

Y1[Y0 <.5] = Y0[Y0 <.5]-rnorm(length(Y0[Y0 <.5]))  

Y1[Y0 >.5] = Y0[Y0 >.5]+rnorm(length(Y0[Y0 >.5]))  

D = sample((1:n)%%2) # Treatment: 1 if treated, 0 otherwise  

Y = D*Y1 + (1-D)*Y0 # Outcome in population  

samp = data.frame(D,Y)  

library(quantreg)  

ATE = coef(lm(Y~D,data=samp))[2]  

QTE = rq(Y~D,tau =  

seq(.05,.95,length.out=10),data=samp,method = "fn")  

 

plot(summary(QTE),parm=2,main="",ylab="QTE",xlab="Quantile",mar = c(5.1, 4.1, 

2.1, 2.1))  
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8 Mediation Effects 
Sometimes we want to describe not just the magnitude and significance of an observed 
causal effect, but also the mechanism (or mechanisms) that produced it. Did our 
intervention raise turnout in the treatment group, in part, by increasing these subjects’ 
sense of political efficacy? If so, how much of that total effect can be attributed to the 
mediated effects of our treatment on efficacy and efficacy on turnout? 

Baron and Kenny (1986) offer a general framework for thinking about mediation by 
decomposing the total effect of treatment into its indirect effect on a mediator that then 
effects the outcome, called an average causal mediation effect (ACME), and the remaining 
average direct effect (ADE) of the treatment. Unbiased estimation of these effects, however, 
requires a set strong assumptions about the relationship between treatment, mediators, 
outcomes, and potential confounders, collectively called sequential ignorability (Imai, Keele, 
and Yamamoto (2010), Bullock, Green, and Ha (2010)).20 

Most causal effects likely operate through multiple channels, and so an assumption of 
sequential ignorability for your experiment can be hard to justify. For example, the top row 
in the figure below illustrates situations in which sequential ignorability holds, while the 
bottom row depicts two (of many possible) cases in which sequential ignorability is violated, 
and mediation analysis is biased. In essence, specifying the effects of a particular mediator 
requires strong assumptions about the role of all the other mediators in the causal chain. 
While some experimental designs can, in theory, provide additional leverage (such as 
running a second, parallel experiment in which the mediator is also manipulated), in 
practice these designs are hard to implement and still sensitive to unobserved bias. In some 
cases, the insights we hope to gain from mediation analysis may be more easily acquired 
from subgroup analysis and experiments designed to tests for moderation. 

Imai and colleagues propose an approach to mediation analysis that allows researchers test 
the sensitivity of their estimates to violations of sequential ignorability.21 In the code we 
demonstrate some of the features of their approach, implemented in the mediation package 
in R (Tingley et al. 2014). We model the relationships with OLS, but the package is capable 
of handling other outcome processes, such generalized linear models or general additive 
models, that may be more appropriate for your data. Most importantly, the package allows 
us to produce bounds that reflect the sensitivity of our point estimates to some violations of 
sequential ignorability. In our simulated data, just over 20 percent of the total effect is 
mediated by our proposed mediator, M and the bias from an unobserved pre-treatment 
confounder would have to be quite large (ρ=.7) before we would reject the finding of a 
positive ACME. These bounds are only valid, however, if we believe there are no unobserved 
post-treatment confounders (as in panel 4). Sensitivity analysis is still possible, but more 
complicated in such settings (Imai and Yamamoto 2013). 

https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn20
https://rawgit.com/egap/methods-guides/master/effect-types/effect-types.html#fn21
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set.seed(1234) # Replication  

n = 1000 # Sample size  

Y0 = runif(n) # Potential outcome under control condition  

D = sample((1:n)%%2) # Treatment: 1 if treated, 0 otherwise  

X<-rnorm(n) # Covariate  

M<-rnorm(n=n,mean=D+rnorm(n)) # Mediator influenced by Treatment  

Y1 = Y0 + 1 + M # Potential outcome under treatment  

Y = D*Y1 + (1-D)*Y0 # Outcome in population  

samp<-data.frame(D,M,Y)  

 

library(mediation)  

med.f<-lm(M~D+X,data=samp) # Model for mediator  
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out.f<-lm(Y~M+D+X,data=samp) # Model for outcome  

 

#Estimate ACME and ADE  

library(mediation)  

med.out<- 

mediate(med.f,out.f,treat="D",mediator="M",robustSE=T,sims=1000)  

# Sensitivity of ACME to unobserved pre-treatment confounder  

s.out<-medsens(med.out)  

 

plot(s.out) # Plot sensistivity bounds  

 

# Structural equations estimates of ACME ADE  

# f1<-formula(Y~D+X)  

# f2<-formula(M~D+X)  

# f3<-formula(Y~D+M+X)  

#  

# med.sys<-systemfit(list(f1,f2,f3),data=samp)  

# ACME<-coef(med.sys)["eq1_D"]-coef(med.sys)["eq3_D"]  

# ADE<-coef(med.sys)["eq3_D"] 
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9 Log-Odds Treatment Effects 
Average treatment effects seem a bit hard to interpret when outcomes are not continuous. 
For example, a very common binary outcome in the study of elections is coded as 1 when 
subjects voted, and 0 when they did not. The average effect might be 0.2, but what does it 
really mean to say that a treatment increased my voting by 0.2? Estimating causal effects for 
dichotomous outcomes requires some additional care, particularly when including 
covariates. A common quantity of causal interest for dichotomous outcomes is our 
treatment’s effect on the log-odds of success, defined for the experimental pool as: 

Δ=logE(Yi(1))1−E(Yi(1))−logE(Yi(0))1−E(Yi(0))Δ=logE(Yi(1))1−E(Yi(1))−logE(Yi(0))1−E(
Yi(0)) 

Freedman (2008b) shows that logistic regression adjusting for covariates in a randomized 
experiments produces biased estimates of this causal effect. The basic intuition for 
Freedman’s argument comes from the fact that taking the log of averages is not the same as 
taking the average of logs and so the treatment coefficient estimated from a logistic 
regression conditioning on covariates will not provide a consistent estimator of log-odds of 
success. Instead, Freedman recommends taking the predicted probabilities varying subjects’ 
treatment status but maintaining their observed covariate profiles to produce a consistent 
estimator of the log-odds. 

The basic procedure is outlined in the code below. The coefficients from the logistics 
regression controlling for covariate X, tend to overestimate the effect of treatment on the log 
odds, while the adjusted estimates from the predicted probabilities produce consistent 
results. 

set.seed(1234) # For replication  

n = 1000 # Sample size  

U = runif(n)  

X = runif(n) # Observed Covariate  

Y0 = ifelse(U>.5,1,0) # Potential Outcomes  

Y1 = ifelse(U+X>.75,1,0)  

D = rbinom(n,1,.75) # Randomly assign 3/4 to treatment  

Y = D*Y1+Y0*(1-D)  

samp = data.frame(X,D,Y)  

aT<-with(samp, mean(Y[D==1]))  

aC<-with(samp, mean(Y[D==0]))  

 

# Unconditional log odds  

log.odds<-log(aT/(1-aT))-log(aC/(1-aC))  

 

# Logistic regression conditioning on X overestimates log odds  

fit<-glm(Y~D+X,data=samp,binomial("logit"))  

log.odds.logit<- 
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  coef(glm(Y~D+X,data=samp,binomial("logit")))[2]  

 

# Dataframes using original covariates for predicted probabilities  

D1<-data.frame(D=1,samp[,c("X")])  

D0<-data.frame(D=0,samp[,c("X")])  

#Adjusted log-odds produces consisted estimator of log-odds  

aT.adj<-predict(fit,newdata=D1,type="response")  

aC.adj<-predict(fit,newdata=D0,type="response")  

log.odds.adj<-log(mean(aT.adj)/(1-mean(aT.adj)))- 

  log(mean(aC.adj)/(1-mean(aC.adj))) 

10 Attributable Effects 
We conclude with a brief discussion of an alternative quantity of causal interest that may be 
particularly useful with binary outcomes: the attributable effect (Rosenbaum 2010). 

Consider a simple case with a dichotomous outcome and treatment. Let AA be the number 

of outcomes attributable to treatment, that is, the number of cases in which YiYi equaled 1 
among treated subjects which would not have occurred had these units been assigned to 

control. For a range of AA’s, we adjust the observed contingency table of outcomes among 
the treated, and compare this resulting distribution to a known null distribution (the 
distribution of outcomes we would have observed had treatment had no effect). The 

resulting range of AA’s for which our test continues to reject the null hypothesis of no effect 
provides a range of effects that are attributable to our treatment. 

Table 1 

D=1D=1 D=0D=0 

Y=1Y=1 ∑YiDi−A∑YiDi−A (1−Yi)(Di)(1−Yi)(Di) 

Y=0Y=0 ∑Yi(1−Di)+A∑Yi(1−Di)+A ∑(1−Yi)(1−Di)∑(1−Yi)(1−Di) 

Rosenbaum (2002) shows extensions of this concept to different types of outcomes (such as 
continuous variables). A similar logic can also be applied to detecting uncommon but 
dramatic responses to treatment (Rosenbaum and Silber 2008). 

Hansen and Bowers (2009) use this approach to identify the number of additional votes 
attributable to different interventions in get-out-the-vote experiment with clustered 
treatment assignment and one-sided non-compliance. They show that, in large samples, one 
can approximate the confidence interval for attributable effects without assessing each 
attribution. Here is an example of that approach where covariates are used to increase 
precision. 

First, we define an attributable effect as A=∑iZiτiA=∑iZiτi, 

where τi=Yi(1)−Yi(0)τi=Yi(1)−Yi(0) and y∈0,1y∈0,1 following Rosenbaum (2002). That is, 
the attributable effect is the number of “yes” or “success” or other “1” responses among 
those treated that we would not have seen if they had been assigned control. 

Second, notice that if we write the set UU as the experimental pool, and the set of control 

units is a subset of the whole pool, C⊆UC⊆U, then we can 

write ∑i∈CYi−Yi(0)=0∑i∈CYi−Yi(0)=0. This means that we can represent AA using totals: 
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A=∑Ni=1Ziτi=∑Ni=1Zi(Yi(1)−Yi(0))=∑i∉Cyi(1)−∑i∉Cyi(0)A=∑i=1NZiτi=∑i=1NZi(Yi(1)−Yi(0))
=∑i∉Cyi(1)−∑i∉Cyi(0) 

=∑i∉CYi−∑i∉CYi(0)=∑Ni=1Yi−∑Ni=1Yi(0)=tU−tC=∑i∉CYi−∑i∉CYi(0)=∑i=1NYi−∑i=1NYi(0)=t
U−tC 

= observed total overall (fixed and observed) - total outcome under control (unobserved, to 
estimate) 

Third, this representation allows us to produce a design-based confidence interval for A^ by 
drawing on the survey sampling literature about statistical inference for sample totals 
because the observed total outcomes, tU, is fixed across randomizations. We can use 
covariates to increase precision here because the survey regression estimator allows us to 
estimate the total that we would have see in the control 

group: t^c=∑i∈UY^i+∑i∈U(Yi−Y^i)t^c=∑i∈UY^i+∑i∈U(Yi−Y^i) with Y^i=f(Xi,β)Y^i=f(Xi,β) 
(Lohr 1999). The survey sampling literature shows that 

as N→∞N→∞, CI(t^c)≈t^c±za/2SE(t^c)CI(t^c)≈t^c±za/2SE(t^c). So, one can 

calculate SEˆ(t^c)SE^(t^c) from standard sampling theory and then 

the CI(A^)≈tU−CIˆ(t^c)CI(A^)≈tU−CI^(t^c). 
In the code below, we provide an illustration using simulated data for a binary response and 

treatment. In 85 percent of the treatment group, Y=1Y=1 compared to 52 percent in the 

control. A difference of this size is consistent with our treatment having caused Y=1Y=1 for 

between 92 and 138 of subjects, for whom YY would have otherwise equaled 0 had they not 
received the treatment. The regression estimator, which leverage precision gained from 
including covariates, produces tighter confidence intervals (98.8 to 135.1) for the 
attributable effects. 
 

set.seed(1234) # For replication  

n = 1000 # Sample size  

X1 = rnorm(n) # Covariates  

X2 = rnorm(n)  

p = pnorm(-0.5 + 0.75*X2) # Unequal probability of treatment  

D = rbinom(n, 1, p)  

p0 = pnorm(rnorm(n)) # Potential outcomes for binary response  

p1 = pnorm(X1 + X2+1)  

Y0 = rbinom(n, 1, p0)  

Y1 = rbinom(n, 1, p1)  

Y = D*Y1 + (1-D)*Y0 # Observed outcome  

samp = data.frame(D,Y,X1,X2) # Data frame  

 

attribute<-function(treat,out,A,data){  

  # Contingency Table of Treatment Status and Outcome  

  attr.tab<-with(data,table(treat,out)) #  

  # Matrix of p-values for Attributable effects, A  

  attr.ps<- 
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    matrix(NA,nc=2,nr=A,dimnames=list(NULL,c("A","p")))  

  for(i in 1:A){  

    attr.ps[i,]<- 

      c(i,fisher.test(attr.tab+matrix(c(0,i,0,-i),2,2))$p)  

    } 

  # Find range of effects  

  get.bounds<-function(){  

    diffs<-ifelse(.05-attr.ps[,"p"]>0,.05- 

                    attr.ps[,"p"],99)  

    index<-(diffs %in%  

              c(min(diffs),min(diffs[diffs>min(diffs)])))  

    index  

    } 

  # Return range of effects  

  return (attr.ps[get.bounds(),]) 

  }  

with(samp,table(D,Y)) 

##    Y 

## D     0   1 

##   0 318 339 

##   1  51 292 

with(samp,apply(table(D,Y),1,prop.table))  

##    D 

## Y           0        1 

##   0 0.4840183 0.148688 

##   1 0.5159817 0.851312 

attribute(treat = D, out= Y, A=200,data=samp)  

##        A          p 

## [1,]  92 0.04519869 

## [2,] 138 0.04587804 

# Regression estimator  

fit1<-lm(Y~X1+X2,data=samp,subset=D==0)  

hatYcU<-predict(fit1,newdata=samp)  

ec<-Y[D==0]-hatYcU[D==0] ## same as residuals(fit1)  

hatTotYc<-sum(hatYcU)+sum(ec)  

N<-length(Y)  

nctrls<-sum(1-D)  
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thefpc<- (1 - (nctrls/N))  

varhattC<-N*thefpc*var(Y[D==0])  

alpha<-c(.05, 1/3)  

alpha<-sort(c(alpha/2, 1-alpha/2))  

ciTotYc<-hatTotYc+sqrt(varhattC)*qnorm(alpha)  

ciAE<-sort(sum(Y) - ciTotYc )  

names(ciAE)<-c("lower 95%","lower  

66%","upper 66%","upper 95%")  

print(ciAE)  

##   lower 95% lower \n66%   upper 66%   upper 95%  

##    98.78637   107.97975   125.90114   135.09451 
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