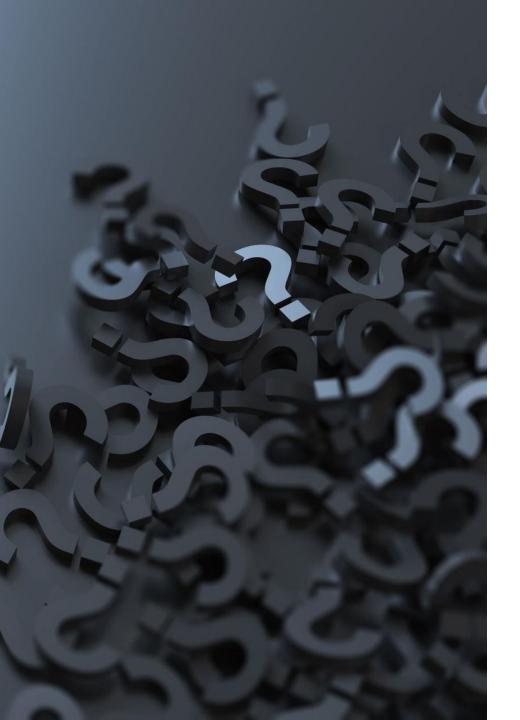
Probability

Le Thai Ha



Outlines

- Essential concepts in understanding probability
- Calculating probabilities using simple events
- Event relations and probability rules
- Independent events
- Conditional probabilities and Bayes' rule

Introduction

- The role of probability in statistics
 - **Known** population: describe the likelihood of a particular sample outcome
 - **Unknown** population: describe the properties of the population

Concepts

Experiment – the process by which an observation is obtained

Simple event – the outcome observed on a single repetition of the experiment

Event – a collection of simple events

Mutually exclusive events – if one event occur, the others cannot.

Sample space – a set of all possible simple events

• Experiment: Roll the dice 100 times and observe the results.

Event: even numbers are observed.

Mutually exclusive events: all simple events are mutually exclusive.

- Experiment collect the age of 100 random males and 100 random females and put them in bins of U16, 17-50, 51-65, over 66
- **Simple events** Assuming none of the 200 people was over 66. There was at least one observation of male and of female in each age group. Simple events are:
 - Male U16, Male 17-50, and Male 51-65
 - Female U16, Female 17-50, and Female 51-65

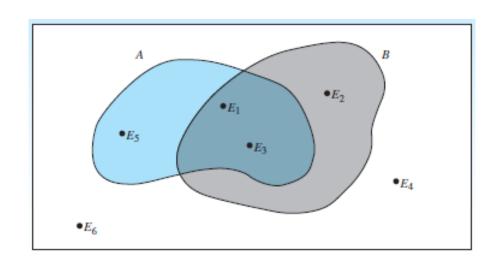
Events

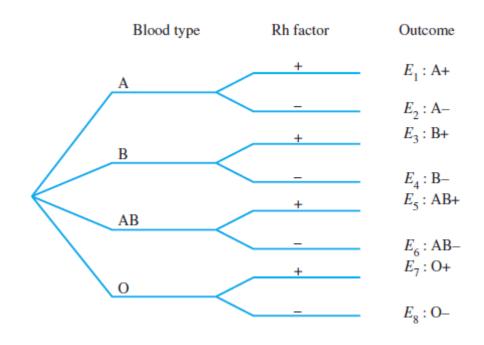
- Event A: a person under 50 is picked.
- Event B: a male is picked
- Event C: a female is picked

Mutually exclusive events

- Events B and C are mutually exclusive.
- Events A and B (or A and C) are not mutually exclusive.
- Sample space comprised by all simple events

Describing sample space





Venn diagram

Tree diagram

Calculating probabilities using simple events

- Relative frequency, $\frac{\text{Frequency}}{n}$
- Probability of an event A, $P(A) = \lim_{n \to \infty} \frac{\text{Frequency}}{n}$
- It also equals the sum of probability of all simple events contained in A.
 - List all simple events in the sample space, i.e. the probability of all simple events considered MUST sum to 1.
 - Assign an appropriate probability for each simple event
 - Determine simple events resulting in the event of interest
 - Sum the probabilities of those simple events

- Event A: An observation of calcium between 400mg and 1000mg
- What are the simple events contained in A?
- What is the probability of event A?

Calcium(mg)	Frequency	Relative Frequency
(0 - 200]	65	0.09
(200 - 400]	174	0.24
(400 - 600]	178	0.24
(600 - 800]	123	0.17
(800 - 1000]	82	0.11
(1000 - 1200]	52	0.07
(1200 - 1400]	28	0.04
(1400 - 1600]	16	0.02
(1600 - 1800]	7	0.01
(1800 - 2000]	7	0.01
(2000 - 2200]	3	0.00
(2200 - 2400]	0	0.00
(2400 - 2600]	1	0.00
(2600 - 2800]	0	0.00
(2800 - 3000]	1	0.00
Total	737	1.00

Example 2 – cont.

• **Experiment** – collect the age of 100 random males and 100 random females and put them in bins of U16, 17-50, and 51-65 (assuming no one above 65 was observed)

• Events:

• Event A: a person under 50 is picked.

Event B: a male is picked

• Event C: a female is picked

	Male		Female
<16		30	18
17-50		50	65
51-65		20	27
		100	100

Questions:

- Draw a tree diagram of the sample space
- What are the simple events contained in A, B, and C?
- What is the probability of event A?

A review of useful counting rules

• Counting rules are helpful in identifying the number of simple events N in experiments, especially when N is *large*.

• The mn-Rule

If an experiment is done in k stages with n_k ways to accomplish a stage k, the number of ways to accomplish the experiment, i.e. the number of simple events, is $n_1 n_2 n_3 ... n_k$.

• Examples:

- Roll three 6-face dices, the total number of results is 6 x 6 x 6 = 216
- The total number possible combinations of male and female in 4 age groups are 2 x 4 = 8.
- There are 3 books A, B, C and 2 slots. The total number of ways to organize the books is 3x2=6

A review of useful counting rules

A counting rule for permutations (order of objects is important)

The total number of ways to arrange n distinct objects, taking them r at a time is

$$P_r^n = \frac{n!}{(n-r)!}$$
 where $n! = n(n-1)(n-2)...(3)(2)(1)$

- Examples:
 - The total number of ways to arrange 5 different books is

$$P_5^5 = \frac{5!}{(5-5)!} = \frac{5!}{0!} = 5 * 4 * 3 * 2 * 1 = 120$$

• The total number of ways to select 5 people from 8 people (and order is important) is

$$P_5^8 = \frac{8!}{(8-5)!} = \frac{8!}{3!} = 8 * 7 * 6 * 5 * 4 = 6720$$

A review of useful counting rules

A counting rule for combinations (order of objects is NOT important)

The total number of ways to combine n distinct objects, taking them r at a time is

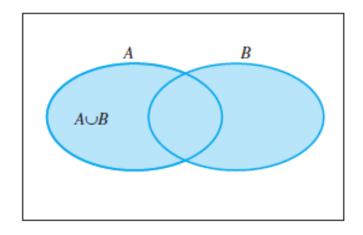
$$C_r^n = \frac{n!}{r!(n-r)!}$$
 where $n! = n(n-1)(n-2)...(3)(2)(1)$

- Examples:
 - The total number of ways to pick 3 books out of 5 different books is

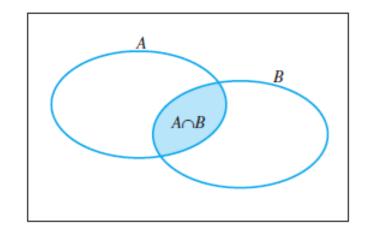
$$C_5^8 = \frac{5!}{3!(5-3)!} = \frac{5!}{3!2!} = 10$$

• How many ways are there to pick 10 nurses out of 90 for a study in determining the attitudes of nurses toward various admin procedures? Is the order of selecting the nurses important?

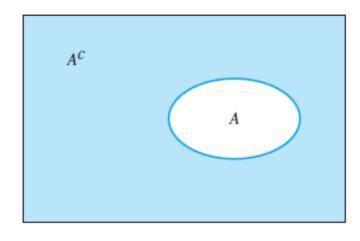
Event Relations and Probability Rules



Union of A and B: either A or B or both occur



Intersection of A and B: both A and B occur



Complement of A: A does not occur

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

$$P(A \cap B) = P(A)P(B|A)$$
$$P(A \cap B) = P(B)P(A|B)$$

The Multiplication Rule

$$P(A^C) = 1 - P(A)$$
$$A \cup A^C = S$$

The Rule for Complements

- Toss 2 fair coins and record the outcomes. Below are the events of interest
 - A: Observe at least 1 head
 - B: Observe 2 different faces
- Simple events (can be from a tree diagram)

• E1: HH,
$$P(E1) = \frac{1}{4}$$

E2: HT,
$$P(E2) = \frac{1}{4}$$

• E3: TH,
$$P(E3) = \frac{1}{4}$$

E4: TT,
$$P(E4) = \frac{1}{4}$$

• A = {E1, E2, E3},
$$P(A) = \frac{3}{4}$$

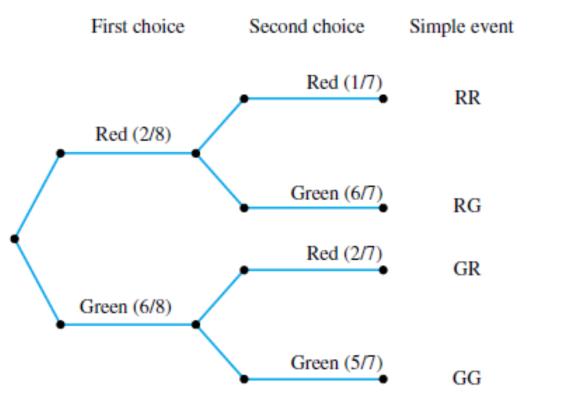
$$B = \{E2, E3\}, P(B) = 2/4$$

• A U B = {E1, E2, E3},
$$P(A \cup B) = \frac{3}{4}$$

•
$$A \cap B = \{E2, E3\}, P(A \cap B) = \frac{1}{2}$$

•
$$A^c = \{E4\}, P(A^c) = \frac{1}{4}$$

- There are 8 toys in a container 2 red and 6 green. Pick random 2 toys.
- Event A: What is the probability of picking up 2 red toys?



$$P(A) = P(Red \ on \ 1st)P(Red \ on \ 2nd \ | \ Red \ on \ 1st)$$

$$P(A) = \left(\frac{2}{8}\right)\left(\frac{1}{7}\right) = 1/28$$

Example 2 - cont.

• Events:

- Event A: a person under 50 is picked.
- Event B: a male is picked
- Event C: a female is picked

	Male	Female	
<16		30	18
17-50		50	65
51-65		20	27
		100	100

- What is the probability of event A?
- What is the probability of event B?
- What is the probability of a male under 50 (A∩B)?
- What is the probability of a person under 50 or a female (A U C)
- What is the probability of a person over 50 (A^c)?

Independent events

• Event A and event B are independent if and only if

$$P(A|B) = P(A)$$
 or $P(A \cap B) = P(A)P(B)$

• Extension of multiplication rules for three independent events

$$P(A \cap B \cap C) = P(A)P(B)P(C)$$

• Example: Roll 3 dices and observe the outcome. What is the probability of having 3 :: ?

Checking independent events

- Roll a single dice and consider the following events
 - Event E: getting an even number
 - Event T: getting a number divisible by three

• Questions:

- What is the probability of E?
- What is the probability of getting an even number (Event E) if you are told that the number was also divisible by three (Event T)?
- Does knowing that the number is divisible by 3 (Event T) change the probability that the number was even (Event E)?

Are Event E and Event T independent?

Source: https://www.siyavula.com/read/maths/grade-11/probability/10-probability-02

Independent Events vs Mutual Exclusive Events

- Mutually exclusive events
 - Cannot both happen, e.g. head and tail cannot both happen in a coin toss
 - If A happened, B cannot happen, P(B|A) = 0
 - Therefore mutually exclusive events are dependent.
 - $P(A \cap B) = 0$, $P(A \cup B) = P(A) + P(B)$
- Independent events
 - $P(A \cap B) = P(A)P(B), P(A \cup B) = P(A) + P(B) P(A)P(B)$
- Example: What is the probability of drawing an ace and a 10 from a deck of 52 cards?

Conditional Probabilities

Conditional probability of an event B given that event A has occurred is

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$
 if $P(A) \neq 0$

• Examples:

- What is the probability of a person <16 (Event B_1) given that the person is a male (Event A)?
- What is the probability of a person a male (Event A) given that he is <16 (Event B_1)?
- Is $P(A|B_1) = P(B_1|A)$?

	Female (A ^c)	Male (A)	
48	18	30	<16 (B ₁)
105	55	50	17-50 (B ₂)
47	27	20	51-65 (B ₃)
200	100	100	

	Female (A ^c)	Male (A)	
0.24	0.09	0.15	<16 (B ₁)
0.525	0.275	0.25	17-50 (B ₂)
0.235	0.135	0.1	51-65 (B ₃)
1	0.5	0.5	

Bayes' Rule

Bayes' rule of conditional probability

$$P(B_i|A) = \frac{P(B_i \cap A)}{P(A)} = \frac{P(B_i)P(A|B_i)}{\sum_{i=1}^k P(B_i)P(A|B_i)}$$
 for $i = 1, 2, ..., k$

- B_1 , ..., B_j must be mutually exclusive and $\sum_{j=1}^k P(B_j) = 1$
- Back to the example in the previous slide

$$P(B_1|A) = \frac{P(B_1 \cap A)}{P(B_1 \cap A) + P(B_2 \cap A) + P(B_3 \cap A)}$$

$$P(B_1|A) = \frac{P(B_1)P(A|B_1)}{P(B_1)P(A|B_1) + P(B_2)P(A|B_2) + P(B_3)P(A|B_3)}$$

$$P(B_1|A) = \frac{0.24*(30/48)}{0.24*(30/48)+0.525*(50/105)+0.235*(20/47)} = 0.3$$

	Female (A ^c)	Male (A)	
48	18	30	<16 (B ₁)
105	55	50	17-50 (B ₂)
47	27	20	51-65 (B ₃)
200	100	100	

	Male (A)	Female (A ^c)	
<16 (B ₁)	0.15	0.09	0.24
17-50 (B ₂)	0.25	0.275	0.525
51-65 (B ₃)	0.1	0.135	0.235
	0.5	0.5	1

Bayes' Rule

$$P(B_i|A) = P(B_i) * \frac{P(A|B_i)}{P(A)}$$
 for k = 1, 2, ..., k

- $P(B_i)$ is **prior probability** without knowledge of the condition A. Can be approximated as 1/k if unknown.
- $P(B_i|A)$ is **posterior probability** the updated version of the prior probability after observing information of the condition A in the sample.

Bayes' Rule

$$P(B_i|A) = P(B_i) * \frac{P(A|B_i)}{P(A)}$$

• Example:

- 60% of businesses that replaced their CEO last year has share price increased by >5%.
- 35% of businesses that replaced their CEO last year doesn't have share price increased by >5%.
- Last year data showed that the probability of share price increased by >5% is 4%.
- What is the probability of a company's share price increased by >5% given it replaced the CEO?

Solution hints

- Event A: A CEO being replaced
- Event B₁: A business has share price increased by >5%.
- What is the prior probability of a company having share price increased by >5%?
- What is the probability of a CEO being replaced?
- What is the probability of a CEO being replaced given that the share price increased by >5%?