Probability

Le Thai Ha

Outlines

- Essential concepts in understanding probability
- Calculating probabilities using simple events
- Event relations and probability rules
- Independent events
- Conditional probabilities and Bayes' rule

Introduction

- The role of probability in statistics
- Known population: describe the likelihood of a particular sample outcome
- Unknown population: describe the properties of the population

Experiment - the process by which an observation is obtained

Simple event - the outcome observed on a single repetition of the experiment

Concepts

Event - a collection of simple events

Mutually exclusive events - if one event occur, the others cannot.

Sample space - a set of all possible simple events

Example 1

- Experiment: Roll the dice 100 times and observe the results.
- Simple events: $\bullet, \bullet, \quad \bullet, \quad \because \quad, \quad \vdots \vdots$
- Event: even numbers are observed.
- Mutually exclusive events: all simple events are mutually exclusive.
- Sample space: $\bullet+\bullet+\bullet \cdot \square+\because \because \cdot+\vdots$

Example 2

- Experiment - collect the age of 100 random males and 100 random females and put them in bins of U16, 17-50, 51-65, over 66
- Simple events - Assuming none of the 200 people was over 66. There was at least one observation of male and of female in each age group. Simple events are:
- Male U16, Male 17-50, and Male 51-65
- Female U16, Female 17-50, and Female 51-65
- Events
- Event A: a person under 50 is picked.
- Event B: a male is picked
- Event C: a female is picked
- Mutually exclusive events
- Events B and C are mutually exclusive.
- Events A and B (or A and C) are not mutually exclusive.
- Sample space - comprised by all simple events

Describing sample space

Venn diagram
Tree diagram

Calculating probabilities using simple events

- Relative frequency, $\frac{\text { Frequency }}{n}$
- Probability of an event $\mathrm{A}, \quad P(A)=\lim _{n \rightarrow \infty} \frac{\text { Frequency }}{n}$
- It also equals the sum of probability of all simple events contained in A.
- List all simple events in the sample space, i.e. the probability of all simple events considered MUST sum to 1.
- Assign an appropriate probability for each simple event
- Determine simple events resulting in the event of interest
- Sum the probabilities of those simple events

Example 3

- Event A: An observation of calcium between 400 mg and 1000 mg
- What are the simple events contained in A?
- What is the probability of event A ?

Calcium (mg)	Frequency	Relative Frequency
$(0-200]$	65	0.09
$(200-400]$	174	0.24
$(400-600]$	178	0.24
$(600-800]$	123	0.17
$(800-1000]$	82	0.11
$(1000-1200]$	52	0.07
$(1200-1400]$	28	0.04
$(1400-1600]$	16	0.02
$(1600-1800]$	7	0.01
$(1800-2000]$	7	0.01
$(2000-2200]$	3	0.00
$(2200-2400]$	0	0.00
$(2400-2600]$	1	0.00
$(2600-2800]$	0	0.00
$(2800-3000]$	1	0.00
Total	737	1.00

Example 2 - cont.

- Experiment - collect the age of 100 random males and 100 random females and put them in bins of U16, 17-50, and 51-65 (assuming no one above 65 was observed)
- Events:
- Event A: a person under 50 is picked.
- Event B: a male is picked
- Event C: a female is picked

	Male	Female	
<16	30	18	
$17-50$	50	65	
$51-65$	20	27	
	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	

- Questions:
- Draw a tree diagram of the sample space
- What are the simple events contained in A, B, and C?
- What is the probability of event A?

A review of useful counting rules

- Counting rules are helpful in identifying the number of simple events N in experiments, especially when N is large.
- The mn-Rule

If an experiment is done in k stages with n_{k} ways to accomplish a stage k, the number of ways to accomplish the experiment, i.e. the number of simple events, is $n_{1} n_{2} n_{3} \ldots n_{k}$.

- Examples:
- Roll three 6-face dices, the total number of results is $6 \times 6 \times 6=216$
- The total number possible combinations of male and female in 4 age groups are $2 \times 4=$ 8.
- There are 3 books A, B, C and 2 slots. The total number of ways to organize the books is $3 \times 2=6$

A review of useful counting rules

- A counting rule for permutations (order of objects is important)

The total number of ways to arrange n distinct objects, taking them r at a time is

$$
P_{r}^{n}=\frac{n!}{(n-r)!} \quad \text { where } n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

- Examples:
- The total number of ways to arrange 5 different books is

$$
P_{5}^{5}=\frac{5!}{(5-5)!}=\frac{5!}{0!}=5 * 4 * 3 * 2 * 1=120
$$

- The total number of ways to select 5 people from 8 people (and order is important) is

$$
P_{5}^{8}=\frac{8!}{(8-5)!}=\frac{8!}{3!}=8 * 7 * 6 * 5 * 4=6720
$$

A review of useful counting rules

- A counting rule for combinations (order of objects is NOT important)

The total number of ways to combine n distinct objects, taking them r at a time is

$$
C_{r}^{n}=\frac{n!}{r!(n-r)!} \quad \text { where } n!=n(n-1)(n-2) \ldots(3)(2)(1)
$$

- Examples:
- The total number of ways to pick 3 books out of 5 different books is

$$
C_{5}^{8}=\frac{5!}{3!(5-3)!}=\frac{5!}{3!2!}=10
$$

- How many ways are there to pick 10 nurses out of 90 for a study in determining the attitudes of nurses toward various admin procedures? Is the order of selecting the nurses important?

Event Relations and Probability Rules

Union of A and B: either A or B or both occur

$$
P(A \cup B)=P(A)+P(B)-P(A \cap B)
$$

Intersection of A and B : both A and B occur

$$
\begin{aligned}
& P(A \cap B)=P(A) P(B \mid A) \\
& P(A \cap B)=P(B) P(A \mid B)
\end{aligned}
$$

The Multiplication Rule

Complement of A: A does not occur

$$
\begin{gathered}
P\left(A^{C}\right)=1-P(A) \\
A \cup A^{C}=S
\end{gathered}
$$

The Rule for Complements

Example 4

- Toss 2 fair coins and record the outcomes. Below are the events of interest
- A: Observe at least 1 head
- B: Observe 2 different faces
- Simple events (can be from a tree diagram)
- E1: $\mathrm{HH}, \mathrm{P}(\mathrm{E} 1)=1 / 4$

E2: HT, P(E2) = $1 / 4$

- E3: TH, P(E3) = $1 / 4$

E4: $\mathrm{TT}, \mathrm{P}(\mathrm{E} 4)=1 / 4$

- $A=\{E 1, E 2, E 3\}, P(A)=3 / 4$
$B=\{E 2, E 3\}, P(B)=2 / 4$
- $A \cup B=\{E 1, E 2, E 3\}, P(A \cup B)=3 / 4$
- $A \cap B=\{E 2, E 3\}, P(A \cap B)=1 / 2$
- $A^{c}=\{\mathrm{E} 4\}, P\left(A^{c}\right)=\frac{1}{4}$

Example 5

- There are 8 toys in a container - 2 red and 6 green. Pick random 2 toys.
- Event A : What is the probability of picking up 2 red toys?

Example 2 - cont.

- Events:
- Event A: a person under 50 is picked.
- Event B : a male is picked
- Event C: a female is picked

	Male	Female	
<16	30	18	
$17-50$	50	65	
$51-65$	20	27	
	$\mathbf{1 0 0}$	$\mathbf{1 0 0}$	

- What is the probability of event A?
- What is the probability of event B ?
- What is the probability of a male under $50(\mathrm{~A} \cap \mathrm{~B})$?
- What is the probability of a person under 50 or a female ($\mathrm{A} \cup \mathrm{C}$)
- What is the probability of a person over $50\left(A^{C}\right)$?

Independent events

- Event A and event B are independent if and only if

$$
\mathrm{P}(\mathrm{~A} \mid \mathrm{B})=\mathrm{P}(\mathrm{~A}) \quad \text { or } \quad P(A \cap B)=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B})
$$

- Extension of multiplication rules for three independent events

$$
P(A \cap B \cap C)=\mathrm{P}(\mathrm{~A}) \mathrm{P}(\mathrm{~B}) \mathrm{P}(\mathrm{C})
$$

- Example: Roll 3 dices and observe the outcome. What is the probability of having 3: : ?

Checking independent events

- Roll a single dice and consider the following events
- Event E: getting an even number
- Event T: getting a number divisible by three
- Questions:
- What is the probability of E ?
- What is the probability of getting an even number (Event E) if you are told that the number was also divisible by three (Event T)?
- Does knowing that the number is divisible by 3 (Event T) change the probability that the number was even (Event E)?

Are Event E and Event T independent?

Independent Events vs Mutual Exclusive Events

- Mutually exclusive events
- Cannot both happen, e.g. head and tail cannot both happen in a coin toss
- If A happened, B cannot happen, $P(B \mid A)=0$
- Therefore mutually exclusive events are dependent.
- $P(A \cap B)=0, P(A \cup B)=P(A)+P(B)$
- Independent events
- $P(A \cap B)=P(A) P(B), P(A \cup B)=P(A)+P(B)-P(A) P(B)$
- Example: What is the probability of drawing an ace and a 10 from a deck of 52 cards?

Conditional Probabilities

- Conditional probability of an event B given that event A has occurred is

$$
\mathrm{P}(\mathrm{~B} \mid \mathrm{A})=\frac{P(A \cap B)}{P(A)} \quad \text { if } P(A) \neq 0
$$

- Examples:
- What is the probability of a person <16 (Event B_{1}) given that the person is a male (Event A)?
- What is the probability of a person a male (Event A) given that he is <16 (Event B_{1})?
- Is $\mathrm{P}\left(\mathrm{A} \mid \mathrm{B}_{1}\right)=\mathrm{P}\left(\mathrm{B}_{1} \mid \mathrm{A}\right)$?

	Male (A)	Female $\left(\mathrm{A}^{\mathrm{C}}\right)$	
$<16\left(\mathrm{~B}_{1}\right)$	30	18	$\mathbf{4 8}$
$17-50\left(\mathrm{~B}_{2}\right)$	50	55	105
$51-65\left(\mathrm{~B}_{3}\right)$	20	27	$\mathbf{4 7}$
	100	100	$\mathbf{2 0 0}$

	Male (A)	Female $\left(\mathrm{A}^{c}\right)$	
$<16\left(\mathrm{~B}_{1}\right)$	0.15	0.09	$\mathbf{0 . 2 4}$
$17-50\left(\mathrm{~B}_{2}\right)$	0.25	0.275	$\mathbf{0 . 5 2 5}$
$51-65\left(\mathrm{~B}_{3}\right)$	0.1	0.135	$\mathbf{0 . 2 3 5}$
	$\mathbf{0 . 5}$	$\mathbf{0 . 5}$	$\mathbf{1}$

Bayes' Rule

- Bayes' rule of conditional probability

$$
P\left(B_{i} \mid A\right)=\frac{P\left(B_{i} \cap A\right)}{P(A)}=\frac{P\left(B_{i}\right) P\left(A \mid B_{i}\right)}{\sum_{j=1}^{k} P\left(B_{j}\right) P\left(A \mid B_{j}\right)} \quad \text { for } i=1,2, \ldots, k
$$

- $\mathrm{B}_{1}, \ldots, \mathrm{~B}_{\mathrm{j}}$ must be mutually exclusive and $\sum_{j=1}^{k} P\left(B_{j}\right)=1$
- Back to the example in the previous slide

$$
\begin{aligned}
& P\left(B_{1} \mid A\right)=\frac{P\left(B_{1} \cap A\right)}{P\left(B_{1} \cap A\right)+P\left(B_{2} \cap A\right)+P\left(B_{3} \cap A\right)} \\
& P\left(B_{1} \mid A\right)=\frac{P\left(B_{1}\right) P\left(A \mid B_{1}\right)}{P\left(B_{1}\right) P\left(A \mid B_{1}\right)+P\left(B_{2}\right) P\left(A \mid B_{2}\right)+P\left(B_{3}\right) P\left(A \mid B_{3}\right)}
\end{aligned}
$$

$$
P\left(B_{1} \mid A\right)=\frac{0.24 *(30 / 48)}{0.24 *(30 / 48)+0.525 *(50 / 105)+0.235 *(20 / 47)}=0.3
$$

	Male (A)	Female $\left(A^{c}\right)$	
$<16\left(B_{1}\right)$	30	18	48
$17-50\left(B_{2}\right)$	50	55	105
$51-65\left(B_{3}\right)$	20	27	47
Male (A)			
Female $\left(A^{c}\right)$			
$<16\left(B_{1}\right)$	0.15	0.09	$\mathbf{0 . 2 4}$
$17-50\left(B_{2}\right)$	0.25	0.275	$\mathbf{0 . 5 2 5}$
$51-65\left(B_{3}\right)$	0.1	0.135	$\mathbf{0 . 2 3 5}$
	0.5	0.5	$\mathbf{1}$

Bayes' Rule

$$
P\left(B_{i} \mid A\right)=P\left(B_{i}\right) * \frac{P\left(A \mid B_{i}\right)}{P(A)} \quad \text { for } \mathrm{k}=1,2, \ldots, \mathrm{k}
$$

- $P\left(B_{i}\right)$ is prior probability - without knowledge of the condition A. Can be approximated as $1 / k$ if unknown.
- $P\left(B_{i} \mid A\right)$ is posterior probability - the updated version of the prior probability after observing information of the condition A in the sample.

Bayes' Rule

$$
P\left(B_{i} \mid A\right)=P\left(B_{i}\right) * \frac{P\left(A \mid B_{i}\right)}{P(A)}
$$

- Example:
- 60% of businesses that replaced their CEO last year has share price increased by $>5 \%$.
- 35% of businesses that replaced their CEO last year doesn't have share price increased by $>5 \%$.
- Last year data showed that the probability of share price increased by $>5 \%$ is 4%.
- What is the probability of a company's share price increased by $>5 \%$ given it replaced the CEO?

- Solution hints

- Event A: A CEO being replaced
- Event B_{1} : A business has share price increased by $>5 \%$.
- What is the prior probability of a company having share price increased by $>5 \%$?
- What is the probability of a CEO being replaced?
- What is the probability of a CEO being replaced given that the share price increased by $>5 \%$?

