Introd	lucti	

Directional Distance Function

Data and Empirical Results

Three Essays on Technical Inefficiency, Productivity Change, Price Efficiency, and Collusive Pricing

Chon Van Le

Department of Economics University of Georgia

November 29, 2010

Introduction 00	US Electric Power Industry	Directional Distance Function	Data a
Outline			

and Empirical Results

- **2** US Electric Power Industry
- Oirectional Distance Function
- Data and Empirical Results

Introduction ●○	US Electric Power Industry	Directional Distance Function	Data and Empirical Results

• *SO*₂, *NO*_X emissions from power plants and other sources contribute to formation of ozone.

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results

- *SO*₂, *NO*_X emissions from power plants and other sources contribute to formation of ozone.
- Since 1995, several CAT programs have been employed to reduce emissions (assumed highly cost-effective).

Introduction • ○	US Electric Power Industry	Data and Empirical Results

- *SO*₂, *NO*_X emissions from power plants and other sources contribute to formation of ozone.
- Since 1995, several CAT programs have been employed to reduce emissions (assumed highly cost-effective).
- Fowlie (2010) indicates pre-existing distortions in output markets may hinder CAT programs from operating efficiently.

Introduction • ○	US Electric Power Industry	Data and Empirical Results

- *SO*₂, *NO*_X emissions from power plants and other sources contribute to formation of ozone.
- Since 1995, several CAT programs have been employed to reduce emissions (assumed highly cost-effective).
- Fowlie (2010) indicates pre-existing distortions in output markets may hinder CAT programs from operating efficiently.
- She investigates plant managers' choice based on compliance cost only.
 ⇒ Implied separability of emission control and electricity

 \Rightarrow implied separability of emission control and electricity generation.

Introduction ●○	US Electric Power Industry	Data and Empirical Results

- *SO*₂, *NO*_X emissions from power plants and other sources contribute to formation of ozone.
- Since 1995, several CAT programs have been employed to reduce emissions (assumed highly cost-effective).
- Fowlie (2010) indicates pre-existing distortions in output markets may hinder CAT programs from operating efficiently.
- She investigates plant managers' choice based on compliance cost only.
 ⇒ Implied separability of emission control and electricity

generation.

 This chapter examines U.S. electric utilities in light of multiple inputs and multiple outputs.

Introduction ○●	US Electric Power Industry	Directional Distance Function	Data and Empirical Res

sults

 Atkinson et al. (2003) employ a stochastic distance function with 3 inputs (fuel, labor, and capital) and 2 good outputs (residential and industrial-commercial electricity sales).

Introduction	
00	

- Atkinson et al. (2003) employ a stochastic distance function with 3 inputs (fuel, labor, and capital) and 2 good outputs (residential and industrial-commercial electricity sales).
- Atkinson and Dorfman (2005) include 1 bad output (*SO*₂ emissions) as a technology shifter.

Introducti	on
0	

- Atkinson et al. (2003) employ a stochastic distance function with 3 inputs (fuel, labor, and capital) and 2 good outputs (residential and industrial-commercial electricity sales).
- Atkinson and Dorfman (2005) include 1 bad output (*SO*₂ emissions) as a technology shifter.
- Fu (2009) estimates a directional distance function with 3 bad outputs (*SO*₂, *CO*₂, and *NO*_X emissions).

Introduction	
00	

- Atkinson et al. (2003) employ a stochastic distance function with 3 inputs (fuel, labor, and capital) and 2 good outputs (residential and industrial-commercial electricity sales).
- Atkinson and Dorfman (2005) include 1 bad output (*SO*₂ emissions) as a technology shifter.
- Fu (2009) estimates a directional distance function with 3 bad outputs (*SO*₂, *CO*₂, and *NO*_X emissions).
- I extend Fu's data set by adding annualized capital costs spent on *SO*₂, *NO*_X and particulate control equipment.

Introduction	۱
00	

- Atkinson et al. (2003) employ a stochastic distance function with 3 inputs (fuel, labor, and capital) and 2 good outputs (residential and industrial-commercial electricity sales).
- Atkinson and Dorfman (2005) include 1 bad output (*SO*₂ emissions) as a technology shifter.
- Fu (2009) estimates a directional distance function with 3 bad outputs (*SO*₂, *CO*₂, and *NO*_X emissions).
- I extend Fu's data set by adding annualized capital costs spent on *SO*₂, *NO*_X and particulate control equipment.
- A multiple-input, multiple-output directional distance function is estimated to evaluate:
 - partial effects of restructuring on inputs and outputs,
 - interactions among inputs and outputs.

Data and Empirical Results

Table 1: Net generation (million megawatt hours)

90.1 16 12.8 1 14.9 4	105.9 460.2 260.1	1995 1709.4 74.6 496.1 310.8	1996 1795.2 81.4 455.1 347.2	1997 1845.0 92.6 479.4	1998 1873.5 128.8 531.3	1999 1881.1 118.1 556.4	2000 1966.3 111.2 601.0
12.8 1 14.9 2 80.5 2	105.9 460.2 260.1	74.6 496.1	81.4 455.1	92.6 479.4	128.8	118.1	111.2
14.9 4 30.5 2	460.2 260.1	496.1	455.1	479.4			
30.5 2	260.1				531.3	556.4	601.0
		310.8	347.2				001.0
76.2			577.2	356.5	323.3	319.5	275.6
	76.5	74.0	75.8	77.2	77.1	79.4	80.9
97.2 32	247.5	3353.5	3444.2	3492.2	3620.3	3694.8	3802.1
001	2002	2003	2004	2005	2006	2007	2008
04.0 19	933.1	1973.7	1978.3	2012.9	1990.5	2016.5	1985.8
24.9	94.6	119.4	121.1	122.2	64.2	65.7	46.2
39.1 6	691.0	649.9	710.1	761.0	816.4	896.6	883.0
17.0 2	264.3	275.8	268.4	270.3	289.2	247.5	254.8
70.8	79.1	79.5	83.1	87.3	96.5	105.2	126.2
	358 5	3883.2	3970.6	4055.4	4064 7	4156.7	4119.4
	04.0 19 24.9 39.1 (17.0 2 70.8	04.0 1933.1 24.9 94.6 39.1 691.0 17.0 264.3 70.8 79.1	04.0 1933.1 1973.7 24.9 94.6 119.4 39.1 691.0 649.9 17.0 264.3 275.8 70.8 79.1 79.5	04.0 1933.1 1973.7 1978.3 24.9 94.6 119.4 121.1 39.1 691.0 649.9 710.1 17.0 264.3 275.8 268.4 70.8 79.1 79.5 83.1	04.0 1933.1 1973.7 1978.3 2012.9 24.9 94.6 119.4 121.1 122.2 39.1 691.0 649.9 710.1 761.0 17.0 264.3 275.8 268.4 270.3 70.8 79.1 79.5 83.1 87.3	04.0 1933.1 1973.7 1978.3 2012.9 1990.5 24.9 94.6 119.4 121.1 122.2 64.2 39.1 691.0 649.9 710.1 761.0 816.4 17.0 264.3 275.8 268.4 270.3 289.2 70.8 79.1 79.5 83.1 87.3 96.5	04.0 1933.1 1973.7 1978.3 2012.9 1990.5 2016.5 24.9 94.6 119.4 121.1 122.2 64.2 65.7 39.1 691.0 649.9 710.1 761.0 816.4 896.6 17.0 264.3 275.8 268.4 270.3 289.2 247.5 70.8 79.1 79.5 83.1 87.3 96.5 105.2

Source: US EIA (2010).

Chon Van Le PhD Dissertation

Introduction	US Electric Power Industry ○●○○	Directional Distance Function	Data and Empirical Results

• Electricity generation has been shifting from coal and petroleum to natural gas and renewable sources.

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results

- Electricity generation has been shifting from coal and petroleum to natural gas and renewable sources.
- Remarkable changes in environmental regulations began with the Clean Air Act Amendment of 1990.
- Several CAT programs have been implemented since 1995 to reduce *SO*₂ and *NO*_X emissions:
 - Acid Rain Program,
 - NO_X Budget Trading Program,
 - Clean Air Interstate Rule NO_X ozone season program.

Introduction 00	US Electric Power Industry ○●○○	Directional Distance Function	Data and Empirical Results

- Electricity generation has been shifting from coal and petroleum to natural gas and renewable sources.
- Remarkable changes in environmental regulations began with the Clean Air Act Amendment of 1990.
- Several CAT programs have been implemented since 1995 to reduce *SO*₂ and *NO*_X emissions:
 - Acid Rain Program,
 - NO_X Budget Trading Program,
 - Clean Air Interstate Rule NO_X ozone season program.
- Consequently, *SO*₂ and *NO*_X emissions have seen dramatic reductions.

Introd	uc	tio	

Directional Distance Function

Data and Empirical Results

Table 2: Emissions (million metric tons)

	1993	1994	1995	1996	1997	1998	1999	2000
CO ₂	2034.2	2063.8	2079.8	2155.5	2253.8	2346.0	2360.4	2464.6
SO ₂	15.0	14.5	11.9	12.9	13.5	13.5	12.8	12.0
NOX	8.0	7.8	7.9	6.3	6.5	6.5	6.0	5.6
	2001	2002	2003	2004	2005	2006	2007	2008
CO ₂	2412.0	2417.3	2438.3	2480.0	2536.7	2481.8	2539.8	2477.2
SO ₂	11.2	10.9	10.6	10.3	10.3	9.5	9.0	7.8 ^a
NOX	5.3	5.2	4.5	4.1	4.0	3.8	3.7	3.3 ^a

Note: ^a SO₂ and NO_X 2008 values are preliminary.

Source: US EIA (2010).

Introduction 00	US Electric Power Industry ○○○●	Directional Distance Function	Data and Empirical Results

• The industry underwent a wave of restructuring since mid-1990s.

Introduction	US Electric Power Industry ○○○●	Data and Empirical Results

- The industry underwent a wave of restructuring since mid-1990s.
- Before, electricity generation was dominated by vertically integrated investor-owned utilities (IOUs).
 Prices were set by state regulators based on a guaranteed rate of return on capital investments.
 ⇒ Large operating costs caused by inefficient investments passed through to customers.

ntroduction	US Electric Power Industry ○○○●	Directional Distance Function	Data and Empirical Results

- The industry underwent a wave of restructuring since mid-1990s.
- Before, electricity generation was dominated by vertically integrated investor-owned utilities (IOUs).
 Prices were set by state regulators based on a guaranteed rate of return on capital investments.
 ⇒ Large operating costs caused by inefficient investments passed through to customers.
- In 1996, states that had high electricity rates began restructuring their electric power industry.
- By 1998, all 50 states and the District of Columbia held formal hearings to consider restructuring.

ntroduction	US Electric Power Industry ○○○●	Directional Distance Function	Data and Empirical Results

- The industry underwent a wave of restructuring since mid-1990s.
- Before, electricity generation was dominated by vertically integrated investor-owned utilities (IOUs).
 Prices were set by state regulators based on a guaranteed rate of return on capital investments.
 ⇒ Large operating costs caused by inefficient investments passed through to customers.
- In 1996, states that had high electricity rates began restructuring their electric power industry.
- By 1998, all 50 states and the District of Columbia held formal hearings to consider restructuring.
- However, the California electricity crisis of 2000 and 2001 halted this transition.

Introc	luction

Directional Distance Function

Data and Empirical Results

• Production technology: combine N good inputs, $\mathbf{x} = (x_1, ..., x_N)' \in R^N_+$, to produce M good outputs, $\mathbf{y} = (y_1, ..., y_M)' \in R^M_+$.

Introd	uctio	n

Directional Distance Function

Data and Empirical Results

- Production technology: combine N good inputs, $\mathbf{x} = (x_1, ..., x_N)' \in R^N_+$, to produce M good outputs, $\mathbf{y} = (y_1, ..., y_M)' \in R^M_+$.
- **S**(**x**,**y**) = {(**x**,**y**) : **x** can produce **y**}, (1) consists of feasible good input and good output vectors.

Introduction

US Electric Power Industry

Directional Distance Function

Data and Empirical Results

- Production technology: combine N good inputs, $\mathbf{x} = (x_1, ..., x_N)' \in R^N_+$, to produce M good outputs, $\mathbf{y} = (y_1, ..., y_M)' \in R^M_+$.
- **S**(**x**,**y**) = {(**x**,**y**) : **x** can produce **y**}, (1) consists of feasible good input and good output vectors.
- Extend (1) to include a vector ỹ = (ỹ₁,...,ỹL)' ∈ R^L₊ of L bad outputs produced jointly with y.

Introduction

US Electric Power Industry

Directional Distance Function

Data and Empirical Results

- Production technology: combine N good inputs, $\mathbf{x} = (x_1, ..., x_N)' \in \mathbf{R}^N_+$, to produce M good outputs, $\mathbf{y} = (y_1, ..., y_M)' \in \mathbf{R}^M_+$.
- **S**(**x**,**y**) = {(**x**,**y**) : **x** can produce **y**}, (1) consists of feasible good input and good output vectors.
- Extend (1) to include a vector ỹ = (ỹ₁,...,ỹL)' ∈ R^L₊ of L bad outputs produced jointly with y.
- Output directional distance function (Chambers et al., 1998):

 $\overrightarrow{D}_{0}(\mathbf{x},\mathbf{y},\widetilde{\mathbf{y}};\mathbf{0},\mathbf{g}_{\mathbf{y}},-\mathbf{g}_{\widetilde{\mathbf{y}}}) = \sup\{\beta: (\mathbf{y}+\beta\mathbf{g}_{\mathbf{y}},\widetilde{\mathbf{y}}-\beta\mathbf{g}_{\widetilde{\mathbf{y}}}) \in P(\mathbf{x})\}$ (2)

 $P(\mathbf{x})$ is set of good and bad outputs produced with \mathbf{x} . Output direction $(\mathbf{g}_{y}, -\mathbf{g}_{\tilde{y}}) \neq (\mathbf{0}, \mathbf{0})$. Differences between frontier and actual outputs are measures of technical inefficiency.

Introduction	US Electric Power Industry	Directional Distance Function	Data and E
		00000	

Properties of the output directional distance function:

• D1. Translation Property:

$$\overrightarrow{D}_{0}(\mathbf{x},\mathbf{y}+lpha\mathbf{g}_{y},\widetilde{y}-lpha\mathbf{g}_{\widetilde{y}};\mathbf{0},\mathbf{g}_{y},-\mathbf{g}_{\widetilde{y}})=\overrightarrow{D}_{0}(\mathbf{x},\mathbf{y},\widetilde{y};\mathbf{0},\mathbf{g}_{y},-\mathbf{g}_{\widetilde{y}})-lpha$$
 (3)

Empirical Results

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Resu

ults

Properties of the output directional distance function:

D1. Translation Property:

$$\overrightarrow{D}_{0}(\mathbf{x},\mathbf{y}+\alpha\mathbf{g}_{y},\widetilde{y}-\alpha\mathbf{g}_{\widetilde{y}};\mathbf{0},\mathbf{g}_{y},-\mathbf{g}_{\widetilde{y}})=\overrightarrow{D}_{0}(\mathbf{x},\mathbf{y},\widetilde{y};\mathbf{0},\mathbf{g}_{y},-\mathbf{g}_{\widetilde{y}})-\alpha$$
(3)

• D2. g-Homogeneity of Degree Minus One: $\overrightarrow{D}_0(\mathbf{x}, \mathbf{y}, \widetilde{y}; \mathbf{0}, \lambda \mathbf{g}_{\gamma}, -\lambda \mathbf{g}_{\widetilde{y}}) = \lambda^{-1} \overrightarrow{D}_0(\mathbf{x}, \mathbf{y}, \widetilde{y}; \mathbf{0}, \mathbf{g}_{\gamma}, -\mathbf{g}_{\widetilde{\gamma}}), \lambda > 0$ (4)

Introduction	US Electric Power Industry	Directional Distance Function ●●●●●●	Data and Empirical Results
Proper	ties of the output dire	ectional distance funct	ion:
、 ● D1	I. Translation Proper	ty:	
$\vec{D}_0(\mathbf{x},\mathbf{y}+\mathbf{x})$	$\alpha \mathbf{g}_{\mathbf{y}}, \tilde{\mathbf{y}} - \alpha \mathbf{g}_{\tilde{\mathbf{y}}}; 0, \mathbf{g}_{\mathbf{y}}, -$	$(-\mathbf{g}_{\widetilde{y}}) = \overrightarrow{D}_0(\mathbf{x},\mathbf{y},\widetilde{y};0,\mathbf{g})$	$_{m{y}},-{f g}_{ ilde{m{y}}})-lpha$ (3)
_ • D2	2. g-Homogeneity of	Degree Minus One:	
		$\lambda^{-1} \overrightarrow{D}_0(\mathbf{x}, \mathbf{y}, \widetilde{\mathbf{y}}; 0, \mathbf{g}_{\mathbf{y}}, -$	$-\mathbf{g}_{\widetilde{y}}),\ \lambda>$ 0 (4)
• D3	3. Good Output Mon	otonicity:	
		$-\mathbf{g}_{\widetilde{\mathcal{Y}}})\leq \overrightarrow{D}_0(\mathbf{x},\mathbf{y},\widetilde{\mathcal{Y}};0,\mathbf{g})$	$\mathbf{g}_{y}, -\mathbf{g}_{\widetilde{y}})$ (5)
• D2	1. Bad Output Monot	conicity: \rightarrow	
$ ilde{y}' \geq ilde{y}$	$\Rightarrow D_{\tau}(\mathbf{x},\mathbf{y},\tilde{\mathbf{y}}';0,\mathbf{g}_{\mathbf{y}},$	$-\mathbf{g}_{\widetilde{y}}) \geq \overrightarrow{D}_0(\mathbf{x},\mathbf{y},\widetilde{y};0,\mathbf{y})$	$(\mathbf{g}_{y}, -\mathbf{g}_{\widetilde{y}})$ (6)

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Result
Prope	rties of the output dire	ectional distance function	:
•	1. Translation Proper		
		$(-\mathbf{g}_{\widetilde{\mathbf{v}}}) = \overrightarrow{D}_0(\mathbf{x},\mathbf{y},\widetilde{\mathbf{y}};0,\mathbf{g}_{\mathbf{v}},-\mathbf{z})$	$-\mathbf{g}_{\widetilde{\mathbf{v}}}) - lpha$ (3)
• D	2. g-Homogeneity of	Degree Minus One:	
$\overrightarrow{D}_0(\mathbf{x},$	$\mathbf{y}, \widetilde{\mathbf{y}}; 0, \lambda \mathbf{g}_{\mathbf{y}}, -\lambda \mathbf{g}_{\widetilde{\mathbf{y}}}) =$	$\lambda^{-1} \overrightarrow{D}_0(\mathbf{x}, \mathbf{y}, \widetilde{y}; 0, \mathbf{g}_y, -\mathbf{g}_{\widetilde{y}})$), $\lambda >$ 0 (4)
	3. Good Output Mon		
		$-\mathbf{g}_{\widetilde{y}}) \leq \overrightarrow{D}_0(\mathbf{x},\mathbf{y},\widetilde{y};0,\mathbf{g}_y,\mathbf{x})$	$-\mathbf{g}_{\widetilde{y}})$ (5)
	4. Bad Output Monot		
$ ilde{y}' \geq ilde{y}$	$\Rightarrow \overrightarrow{D}_{\tau}(\mathbf{x},\mathbf{y},\widetilde{\mathbf{y}}';0,\mathbf{g}_{\mathbf{y}},$	$-\mathbf{g}_{\widetilde{\mathcal{Y}}}) \geq \overrightarrow{D}_0(\mathbf{x},\mathbf{y},\widetilde{\mathcal{Y}};0,\mathbf{g}_{\mathcal{Y}},\mathbf{v})$	$-\mathbf{g}_{ ilde{\mathcal{Y}}})$ (6)
	5. Concavity:		
	$\mathbf{y}, \tilde{\mathbf{y}}; 0, \mathbf{g}_{\mathbf{y}}, -\mathbf{g}_{\tilde{\mathbf{y}}})$ is con	cave in($\mathbf{x}, \mathbf{y}, \tilde{\mathbf{y}}$)	(7)
	6. Non-negativity:		
$D_0(\mathbf{x},$	$(\mathbf{y}, ilde{\mathbf{y}};0,\mathbf{g}_y,-\mathbf{g}_{ ilde{\mathbf{y}}})\geq 0$ ($\Rightarrow (\mathbf{y}, \widetilde{y}) \in \mathcal{P}(\mathbf{x})$	(8)

Directional Distance Function

Data and Empirical Results

• Quadratic form to approximate output directional distance function:

$$\vec{D}_{0,it}(\mathbf{x}, \mathbf{y}, \tilde{\mathbf{y}}) = \gamma_i d_i + \sum_n \gamma_n \mathbf{x}_{it,n} + \sum_m \gamma_m \mathbf{y}_{it,m} + \sum_l \gamma_l \tilde{\mathbf{y}}_{it,l} + \frac{1}{2} \sum_n \sum_{n'} \gamma_{nn'} \mathbf{x}_{it,n} \mathbf{x}_{it,n'} + \frac{1}{2} \sum_m \sum_{m'} \gamma_{mm'} \mathbf{y}_{it,m} \mathbf{y}_{it,m'} + \frac{1}{2} \sum_l \sum_{l'} \gamma_{ll'} \tilde{\mathbf{y}}_{it,l} \tilde{\mathbf{y}}_{it,l'} + \sum_n \sum_m \gamma_{nm} \mathbf{x}_{it,n} \mathbf{y}_{it,m} + \sum_n \sum_l \gamma_{nl} \mathbf{x}_{it,n} \tilde{\mathbf{y}}_{it,l} + \sum_m \sum_l \gamma_{ml} \mathbf{y}_{it,m} \tilde{\mathbf{y}}_{it,l} + \gamma_{tt} + \gamma_{re} RE + \gamma_{res} RE \times KSO2 + \gamma_{ren} RE \times KNOX + \gamma_{ret} RE \times KTSP + \varepsilon_{it}$$
(9)
 d_i is a dummy variable for utility $i, i = 1, ..., F$, and

$$\varepsilon_{it} = \nu_{it} + \mu_{it} \tag{10}$$

Introduction

US Electric Power Industry

Directional Distance Function

Data and Empirical Results

• Quadratic form to approximate output directional distance function:

$$\vec{D}_{0,it}(\mathbf{x}, \mathbf{y}, \tilde{\mathbf{y}}) = \gamma_i d_i + \sum_n \gamma_n x_{it,n} + \sum_m \gamma_m y_{it,m} + \sum_l \gamma_l \tilde{y}_{it,l} + \frac{1}{2} \sum_n \sum_{n'} \gamma_{nn'} x_{it,n} x_{it,n'} + \frac{1}{2} \sum_m \sum_{m'} \gamma_{mm'} y_{it,m} y_{it,m'} + \frac{1}{2} \sum_l \sum_{l'} \gamma_{ll'} \tilde{y}_{it,l} \tilde{y}_{it,l'} + \sum_n \sum_m \gamma_{nm} x_{it,n} y_{it,m} + \sum_n \sum_l \gamma_{nl} x_{it,n} \tilde{y}_{it,l} + \sum_m \sum_l \gamma_{ml} y_{it,m} \tilde{y}_{it,l} + \gamma_{tt} t + \gamma_{res} RE + \gamma_{res} RE \times KSO2 + \gamma_{ren} RE \times KNOX + \gamma_{ret} RE \times KTSP + \varepsilon_{it}$$
(9)

 d_i is a dummy variable for utility i, i = 1, ..., F, and

$$\varepsilon_{it} = \nu_{it} + \mu_{it} \tag{10}$$

• Translation property requires following restrictions:

$$\begin{split} &\sum_{m} \gamma_{m} g_{m} - \sum_{l} \gamma_{l} g_{l} = -1, \\ &\sum_{m} \gamma_{mm'} g_{m} - \sum_{l} \gamma_{m'} g_{l} = 0, \quad \forall m' \\ &\sum_{m} \gamma_{ml'} g_{m} - \sum_{l} \gamma_{ll'} g_{l} = 0, \quad \forall l' \\ &\sum_{m} \gamma_{nm} g_{m} - \sum_{l} \gamma_{nl} g_{l} = 0, \quad \forall n. \end{split}$$

Symmetry is imposed on doubly-subscripted coefficients.

Introd	uction

Directional Distance Function 000000

Implicit function theorem calculates partial effects of: a good output on another good output

$$-(\partial \overrightarrow{D}_0/\partial y_m)/(\partial \overrightarrow{D}_0/\partial y_{m'}), \ \forall m, m'; m \neq m',$$

a bad output on another bad output $-(\partial \overrightarrow{D}_0 / \partial \widetilde{y}_l) / (\partial \overrightarrow{D}_0 / \partial \widetilde{y}_{l'})), \forall l, l'; l \neq l',$

Introduction

US Electric Power Industry

Directional Distance Function

Data and Empirical Results

• Implicit function theorem calculates partial effects of: a good output on another good output

 $-(\partial \overrightarrow{D}_0/\partial y_m)/(\partial \overrightarrow{D}_0/\partial y_{m'}), \forall m, m'; m \neq m',$

a bad output on another bad output

 $-(\partial \vec{D}_0/\partial \tilde{y}_l)/(\partial \vec{D}_0/\partial \tilde{y}_{l'})), \forall l, l'; l \neq l',$

an input on another input

 $-(\partial \overrightarrow{D}_0/\partial x_n)/(\partial \overrightarrow{D}_0/\partial x_{n'}), \forall n, n'; n \neq n',$

an input on a good output and a bad output

 $-(\partial \vec{D}_0/\partial y_m)/(\partial \vec{D}_0/\partial x_n), \forall m, n, \text{ and} \\ -(\partial \vec{D}_0/\partial \tilde{y}_l)/(\partial \vec{D}_0/\partial x_n), \forall l, n.$

Introduction

US Electric Power Industry

Directional Distance Function

Data and Empirical Results

• Implicit function theorem calculates partial effects of: a good output on another good output

$$-(\partial \overrightarrow{D}_0/\partial y_m)/(\partial \overrightarrow{D}_0/\partial y_{m'}), \ \forall m,m'; \ m \neq m',$$

a bad output on another bad output

 $-(\partial \overrightarrow{D}_0/\partial \widetilde{y}_l)/(\partial \overrightarrow{D}_0/\partial \widetilde{y}_{l'})), \, \forall l, l'; l \neq l',$

an input on another input

 $-(\partial \overrightarrow{D}_0/\partial x_n)/(\partial \overrightarrow{D}_0/\partial x_{n'}), \forall n, n'; n \neq n',$

an input on a good output and a bad output

$$-(\partial \vec{D}_0/\partial y_m)/(\partial \vec{D}_0/\partial x_n), \forall m, n, \text{ and} \\ -(\partial \vec{D}_0/\partial \tilde{y}_l)/(\partial \vec{D}_0/\partial x_n), \forall l, n.$$

• Transform output directional distance function measures into Malmquist distance function measures: $D_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{\mathbf{y}}_{it}) = 1/(1 + \vec{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{\mathbf{y}}_{it}))$ (12)

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results

• Taking logs of distance function $1 = D_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it})\exp(\epsilon_{it})$ and using fitted values from (9) transformed by (12), I get $0 = \ln \hat{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it}) + \hat{\epsilon}_{it}$ (13) or $\hat{\epsilon}_{it} = \hat{v}_{it} + \hat{u}_{it} = -\ln \hat{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it})$ (14)

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results

- Taking logs of distance function $1 = D_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it})\exp(\epsilon_{it})$ and using fitted values from (9) transformed by (12), I get $0 = \ln \hat{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it}) + \hat{\epsilon}_{it}$ (13) or $\hat{\epsilon}_{it} = \hat{v}_{it} + \hat{u}_{it} = -\ln \hat{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it})$ (14)
- I follow Cornwell, Schmidt, and Sickles (1990) to sweep away
 ^v_{it}:

$$\hat{\epsilon}_{it} = \sum_{i} \psi_i d_i + \sum_{i} \phi_i d_i t + \zeta_{it}$$
(15)

and get fitted values, \tilde{u}_{it} , consistent estimates of u_{it} .

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results

- Taking logs of distance function $1 = D_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it})\exp(\epsilon_{it})$ and using fitted values from (9) transformed by (12), I get $0 = \ln \hat{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it}) + \hat{\epsilon}_{it}$ (13) or $\hat{\epsilon}_{it} = \hat{v}_{it} + \hat{u}_{it} = -\ln \hat{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it})$ (14)
- I follow Cornwell, Schmidt, and Sickles (1990) to sweep away
 ^v_{it}:

$$\hat{\epsilon}_{it} = \sum_{i} \psi_i d_i + \sum_{i} \phi_i d_i t + \zeta_{it}$$
(15)
and get fitted values, \tilde{u}_{it} , consistent estimates of u_{it} .

Add and subtract \$\tilde{u}_t = min_i(\tilde{u}_{it})\$, estimated frontier intercept
 0 = ln \$\tilde{D}_0^t(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it}) + \tilde{u}_t + \tilde{v}_{it} + \tilde{u}_{it} - \tilde{u}_t\$
 = ln \$\tilde{D}_0^{F,t}(\mathbf{x}_{it}, \mathbf{y}_{it}, \tilde{y}_{it}) + \tilde{v}_{it} + \tilde{u}_{it}^F\$

Introd	uctio	n

Directional Distance Function

Data and Empirical Results

• Utility i's technical efficiency in period t: $TE_{it} = exp(-\tilde{u}_{it}^F)$

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results

- Utility i's technical efficiency in period t: $TE_{it} = exp(-\tilde{u}_{it}^F)$
- Efficiency change $EC_{i,t+1}$ is the change in TE from t to t + 1 $EC_{i,t+1} = TE_{i,t+1} - TE_{it}$

Introduction	US

Directional Distance Function

Data and Empirical Results

- Utility i's technical efficiency in period t: $TE_{it} = exp(-\tilde{u}_{it}^F)$
- Efficiency change $EC_{i,t+1}$ is the change in TE from t to t + 1 $EC_{i,t+1} = TE_{i,t+1} - TE_{it}$
- Technical change $TC_{i,t+1}$:

 $TC_{i,t+1} = \ln \hat{D}_0^{t+1}(\mathbf{x}, \mathbf{y}, \tilde{\mathbf{y}}) + \tilde{u}_{t+1} - [\ln \hat{D}_0^t(\mathbf{x}, \mathbf{y}, \tilde{\mathbf{y}}) + \tilde{u}_t]$ indicates the shift in the frontier over time.

Introduction	

Directional Distance Function

Data and Empirical Results

• Utility i's technical efficiency in period t:

 $TE_{it} = exp(-\tilde{u}_{it}^F)$

- Efficiency change $EC_{i,t+1}$ is the change in TE from t to t + 1 $EC_{i,t+1} = TE_{i,t+1} - TE_{it}$
- Technical change $TC_{i,t+1}$: $TC_{i,t+1} = \ln \hat{D}_0^{t+1}(\mathbf{x}, \mathbf{y}, \tilde{y}) + \tilde{u}_{t+1} - [\ln \hat{D}_0^t(\mathbf{x}, \mathbf{y}, \tilde{y}) + \tilde{u}_t]$ indicates the shift in the frontier over time.
- Productivity change PC_{it} : $PC_{it} = EC_{it} + TC_{it}$

Introduction	US Electric Power Industry

• Utility i's technical efficiency in period t:

$$TE_{it} = exp(-\tilde{u}_{it}^F)$$

- Efficiency change $EC_{i,t+1}$ is the change in TE from t to t + 1 $EC_{i,t+1} = TE_{i,t+1} - TE_{it}$
- Technical change $TC_{i,t+1}$: $TC_{i,t+1} = \ln \hat{D}_0^{t+1}(\mathbf{x}, \mathbf{y}, \tilde{y}) + \tilde{u}_{t+1} - [\ln \hat{D}_0^t(\mathbf{x}, \mathbf{y}, \tilde{y}) + \tilde{u}_t]$ indicates the shift in the frontier over time.

• Productivity change
$$PC_{it}$$
:
 $PC_{it} = EC_{it} + TC_{it}$

Standardize input and output measures to a zero mean and unit variance.

Introduction	US Electric Power

• Utility i's technical efficiency in period t:

ndustry

$$TE_{it} = exp(-\tilde{u}_{it}^F)$$

- Efficiency change $EC_{i,t+1}$ is the change in TE from t to t + 1 $EC_{i,t+1} = TE_{i,t+1} - TE_{it}$
- Technical change $TC_{i,t+1}$: $TC_{i,t+1} = \ln \hat{D}_0^{t+1}(\mathbf{x}, \mathbf{y}, \tilde{y}) + \tilde{u}_{t+1} - [\ln \hat{D}_0^t(\mathbf{x}, \mathbf{y}, \tilde{y}) + \tilde{u}_t]$ indicates the shift in the frontier over time.

• Productivity change
$$PC_{it}$$
:
 $PC_{it} = EC_{it} + TC_{it}$

Standardize input and output measures to a zero mean and unit variance.

Pre-assign the direction $(\mathbf{g}_{y}, -\mathbf{g}_{\tilde{y}})$ with different values expressing different assumed tradeoffs between good and bad outputs.

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results ●○○○○○○
Data	eot:		

 Extended Fu's (2009) panel of 78 utilities, spanning from 1988 to 2005.

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results ●○○○○○○○

- Extended Fu's (2009) panel of 78 utilities, spanning from 1988 to 2005.
- I add 3 new input variables, i.e., annualized capital costs KSO2, KNOX, and KTSP spent on SO₂, NO_X and particulate removal devices.

Introduction 00	US Electric Power Industry	Directional Distance Function	Data and Empirical Results ●○○○○○○

- Extended Fu's (2009) panel of 78 utilities, spanning from 1988 to 2005.
- I add 3 new input variables, i.e., annualized capital costs KSO2, KNOX, and KTSP spent on SO₂, NO_X and particulate removal devices.
- I use Integrated Environmental Control Model (IECM) developed by Department of Engineering and Public Policy (CMU) with primary data from the U.S. Energy Information Administration.

Introduction	US Electric Power Industry	Directional Distance Function	Data and Empirical Results ●○○○○○○○

- Extended Fu's (2009) panel of 78 utilities, spanning from 1988 to 2005.
- I add 3 new input variables, i.e., annualized capital costs KSO2, KNOX, and KTSP spent on *SO*₂, *NO*_X and particulate removal devices.
- I use Integrated Environmental Control Model (IECM) developed by Department of Engineering and Public Policy (CMU) with primary data from the U.S. Energy Information Administration.

Empirical results:

 Estimate the directional distance function with 3 sets of output direction vectors (2,-1), (1,-1), and (1,-2).

- Extended Fu's (2009) panel of 78 utilities, spanning from 1988 to 2005.
- I add 3 new input variables, i.e., annualized capital costs KSO2, KNOX, and KTSP spent on SO₂, NO_X and particulate removal devices.
- I use Integrated Environmental Control Model (IECM) developed by Department of Engineering and Public Policy (CMU) with primary data from the U.S. Energy Information Administration.

Empirical results:

- Estimate the directional distance function with 3 sets of output direction vectors (2,-1), (1,-1), and (1,-2).
- Focus on direction vector (1,-1), assuming equal weights.

Introd	uction

Data and Empirical Results

Table 3: Partial Derivatives of Directional Distance Function w.r.t.Outputs

(Direction: $g_y = 1, -g_{\tilde{y}} = -1$)	,
Good Outputs:	$\partial \overrightarrow{D}_0 / \partial y$
Residential (SALR)	-0.73043
Industrial-Commercial (SALIC)	-0.33642
Bad Outputs:	$\partial \overrightarrow{D}_0 / \partial \widetilde{y}$
SO ₂	0.06340
CO ₂	0.00230
NO _X	0.00115

Note: These partial effects are averages weighted for electricity sales made by utilities.

These results are consistent with properties D3 and D4 above.

Directional Distance Function

Data and Empirical Results

Table 4: Estimation Results

Variable	Coefficient (standard error)		
	(2, -1)	(1, -1)	(1, -2)
Time	$0.00577 \\ (0.0003)^{**}$	0.01021 (0.0006)**	0.00814 (0.0005)**
Restructuring	-0.01535	-0.02371	-0.01987
	(0.0043)**	(0.0072)**	(0.0058)**
Restructuring × KNOX	-0.00933	-0.01998	-0.01660
	(0.0040)**	(0.0067)**	(0.0053)**
Restructuring×KTSP	0.00567	0.01442	0.01470
	(0.0051)	(0.0086)*	(0.0069)**
Restructuring×KSO2	0.00798	0.02110	0.01868
	(0.0045)*	(0.0074)**	(0.0059)**
KNOX	-0.00563	-0.00888	-0.00108
	(0.0042)	(0.0070)	(0.0056)

Directional Distance Function

Data and Empirical Results

Table 5: Partial Effects of Restructuring (percent)

	Below-average utilities	Above-average utilities
<u>∂KNOX</u> ∂RE	-8.52	6.65
<u>∂KSO2</u> ∂RE	5.73	-0.02

Directional Distance Function

Data and Empirical Results

Table 5: Partial Effects of Restructuring (percent)

	Below-average utilities	Above-average utilities
<u>∂KNOX</u> ∂RE	-8.52	6.65
<u>∂KSO2</u> ∂RE	5.73	-0.02
<u>∂KTSP</u> ∂RE	2.29	1.35
<u>∂SALR</u> ∂RE	-0.21	-0.44
<u>∂SALIC</u> ∂RE	-0.77	-0.70

Introd	uct	io	n

Directional Distance Function

Data and Empirical Results

Table 5: Partial Effects Among Outputs

	Below-average utilities	Above-average utilities
Good Outputs		
<u>∂SALIC</u> ∂SALR	-3.6	-1.53

Introd	uctio	n

Directional Distance Function

Data and Empirical Results

Table 5: Partial Effects Among Outputs

	Below-average utilities	Above-average utilities
Good Outputs		
<u>∂SALIC</u> ∂SALR	-3.6	-1.53
Bad Outputs		
$\frac{\partial NO_X}{\partial CO_2}$	7.75	6.15
$\frac{\partial CO_2}{\partial SO_2}$	-0.19	0.67
$\frac{\partial CO_2}{\partial SO_2}$ $\frac{\partial NO_X}{\partial SO_2}$	2.14	-6.51

Introd	uct	io	n

Directional Distance Function

Data and Empirical Results

Table 5: Partial Effects Among Outputs

	Below-average utilities	Above-average utilities
Good Outputs		
<u>ðSALIC</u> ðSALR	-3.6	-1.53
Bad Outputs		
$\frac{\partial NO_X}{\partial CO_2}$	7.75	6.15
$\frac{\partial CO_2}{\partial SO_2}$	-0.19	0.67
$\frac{\partial NO_X}{\partial SO_2}$	2.14	-6.51
Bad vs. Good Outputs		
$\frac{\partial SO_2}{\partial SALR}$	88.60	5.40
$\frac{\partial SO_2}{\partial SALIC}$	67.04	3.72
$\frac{\partial CO_2}{\partial SALR}$	3.33	-2.50
$\frac{\partial CO_2}{\partial SALIC}$	0.90	-2.07
$\frac{\partial NO_X}{\partial SALR}$	-22.08	15.54
$\frac{\partial NO_X}{\partial SALIC}$	-6.10	12.52

Chon Van Le PhD Dissertation

Directional Distance Function

Data and Empirical Results

Table 6: Partial Effects of Inputs on Outputs

	Below-average utilities	Above-average utilities
Good Outputs		
<u>∂SALR</u> ∂Capital	0.02	0.09
<u> </u>	0.08	0.11
<u>ðSÁLR</u> ðFuel	-0.16	0.30
<u>∂SALIC</u> ∂Fuel	-0.57	0.39
<u>∂SALR</u> ∂Labor	-0.04	0.03
<u>∂SALIC</u> ∂Labor	-0.14	0.04

Data and Empirical Results

Table 6: Partial Effects of Inputs on Outputs

	Below-average utilities	Above-average utilities
Good Outputs		
<u>∂SALR</u> ∂Capital	0.02	0.09
<u>∂SALIC</u> ∂Capital	0.08	0.11
<u> </u>	-0.16	0.30
<u> </u>	-0.57	0.39
<u>∂SALR</u> ∂Labor	-0.04	0.03
$\frac{\partial SALIC}{\partial Labor}$	-0.14	0.04
Bad Outputs		
$\frac{\partial SO_2}{\partial KSO2}$	-0.76	-0.72
$\frac{\partial NO_X}{\partial KNOX}$	-0.97	-2.43

Directional Distance Function

Data and Empirical Results

Table 6: Partial Effects of Inputs on Outputs

	Below-average utilities	Above-average utilities
Good Outputs		
<u>∂SALR</u> ∂Capital	0.02	0.09
<u>∂SALIC</u> ∂Capital	0.08	0.11
<u>∂SALR</u> ∂Fuel	-0.16	0.30
<u>ðSALIC</u> ðFuel	-0.57	0.39
<u>ðSALR</u> ðLabor	-0.04	0.03
∂SALIC ∂Labor	-0.14	0.04
Bad Outputs		
<u>∂SO₂</u> ∂KSO2	-0.76	-0.72
$\frac{\partial NO_X}{\partial KNOX}$	-0.97	-2.43
$\frac{\partial CO_2}{\partial KSO2}$	-0.09	0.70
$\frac{\partial CO_2}{\partial KNOX}$	0.09	0.40
$\frac{\partial CO_2}{\partial KTSP}$	-0.60	2.19

Chon Van Le PhD Dissertation

Directional Distance Function

Data and Empirical Results

Table 7: Average Utility TE, EC, TC, PC

	1988	1989	1990	1991	1992	1993	1994	1995	1996
TE	0.8729	0.8919	0.9112	0.9314	0.9519	0.9644	0.9745	0.9769	0.9644
EC		0.0191	0.0196	0.0201	0.0206	0.0125	0.0101	0.0024	-0.0125
тс		0.0134	0.0131	0.0126	0.0122	0.0033	-0.0001	-0.0083	-0.0241
PC		0.0334	0.0340	0.0342	0.0092	0.0096	0.0095	-0.0012	-0.0335
	1997	1998	1999	2000	2001	2002	2003	2004	2005
TE	0.9522	0.9411	0.9308	0.9307	0.9544	0.9409	0.9309	0.9209	0.9111
EC	-0.0123	-0.0119	-0.0114	0.0001	0.0229	-0.0102	-0.0101	-0.0099	-0.0098
тс	-0.0246	-0.0249	-0.0253	-0.0133	0.0098	-0.0245	-0.0250	-0.0253	-0.0257
PC	-0.0344	-0.0375	-0.0366	-0.0370	0.0712	-0.0287	-0.0287	-0.0283	-0.0283

Introc	luction

Thank you very much for your attention!