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Introduction US Electric Power Industry Directional Distance Function Data and Empirical Results

SO2, NOX emissions from power plants and other sources
contribute to formation of ozone.

Since 1995, several CAT programs have been employed to
reduce emissions (assumed highly cost-effective).
Fowlie (2010) indicates pre-existing distortions in output
markets may hinder CAT programs from operating
efficiently.
She investigates plant managers’ choice based on
compliance cost only.
⇒ Implied separability of emission control and electricity
generation.
This chapter examines U.S. electric utilities in light of
multiple inputs and multiple outputs.
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Introduction US Electric Power Industry Directional Distance Function Data and Empirical Results

Atkinson et al. (2003) employ a stochastic distance
function with 3 inputs (fuel, labor, and capital) and 2 good
outputs (residential and industrial-commercial electricity
sales).

Atkinson and Dorfman (2005) include 1 bad output (SO2
emissions) as a technology shifter.
Fu (2009) estimates a directional distance function with 3
bad outputs (SO2, CO2, and NOX emissions).
I extend Fu’s data set by adding annualized capital costs
spent on SO2, NOX and particulate control equipment.
A multiple-input, multiple-output directional distance
function is estimated to evaluate:

- partial effects of restructuring on inputs and outputs,
- interactions among inputs and outputs.
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Table 1: Net generation (million megawatt hours)

Energy Source 1993 1994 1995 1996 1997 1998 1999 2000

Coal 1690.1 1690.7 1709.4 1795.2 1845.0 1873.5 1881.1 1966.3

Petroleum 112.8 105.9 74.6 81.4 92.6 128.8 118.1 111.2

Natural Gas 414.9 460.2 496.1 455.1 479.4 531.3 556.4 601.0

Hydroelectric 280.5 260.1 310.8 347.2 356.5 323.3 319.5 275.6

Other Renewables 76.2 76.5 74.0 75.8 77.2 77.1 79.4 80.9

All Sources 3197.2 3247.5 3353.5 3444.2 3492.2 3620.3 3694.8 3802.1

Energy Source 2001 2002 2003 2004 2005 2006 2007 2008

Coal 1904.0 1933.1 1973.7 1978.3 2012.9 1990.5 2016.5 1985.8

Petroleum 124.9 94.6 119.4 121.1 122.2 64.2 65.7 46.2

Natural Gas 639.1 691.0 649.9 710.1 761.0 816.4 896.6 883.0

Hydroelectric 217.0 264.3 275.8 268.4 270.3 289.2 247.5 254.8

Other Renewables 70.8 79.1 79.5 83.1 87.3 96.5 105.2 126.2

All Sources 3736.6 3858.5 3883.2 3970.6 4055.4 4064.7 4156.7 4119.4

Source: US EIA (2010).
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Electricity generation has been shifting from coal and
petroleum to natural gas and renewable sources.

Remarkable changes in environmental regulations began
with the Clean Air Act Amendment of 1990.
Several CAT programs have been implemented since 1995
to reduce SO2 and NOX emissions:

- Acid Rain Program,
- NOX Budget Trading Program,
- Clean Air Interstate Rule NOX ozone season program.

Consequently, SO2 and NOX emissions have seen
dramatic reductions.
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Table 2: Emissions (million metric tons)

1993 1994 1995 1996 1997 1998 1999 2000

CO2 2034.2 2063.8 2079.8 2155.5 2253.8 2346.0 2360.4 2464.6

SO2 15.0 14.5 11.9 12.9 13.5 13.5 12.8 12.0

NOX 8.0 7.8 7.9 6.3 6.5 6.5 6.0 5.6

2001 2002 2003 2004 2005 2006 2007 2008

CO2 2412.0 2417.3 2438.3 2480.0 2536.7 2481.8 2539.8 2477.2

SO2 11.2 10.9 10.6 10.3 10.3 9.5 9.0 7.8a

NOX 5.3 5.2 4.5 4.1 4.0 3.8 3.7 3.3a

Note: a SO2 and NOX 2008 values are preliminary.

Source: US EIA (2010).
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The industry underwent a wave of restructuring since
mid-1990s.

Before, electricity generation was dominated by vertically
integrated investor-owned utilities (IOUs).

Prices were set by state regulators based on a
guaranteed rate of return on capital investments.
⇒ Large operating costs caused by inefficient

investments passed through to customers.
In 1996, states that had high electricity rates began
restructuring their electric power industry.
By 1998, all 50 states and the District of Columbia held
formal hearings to consider restructuring.
However, the California electricity crisis of 2000 and 2001
halted this transition.
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Production technology: combine N good inputs,
x = (x1, ..., xN)

′ ∈ RN
+, to produce M good outputs,

y = (y1, ..., yM)′ ∈ RM
+ .

S(x,y) = {(x,y) : x can produce y}, (1)
consists of feasible good input and good output vectors.
Extend (1) to include a vector ỹ = (ỹ1, ..., ỹL)

′ ∈ RL
+ of L

bad outputs produced jointly with y.
Output directional distance function (Chambers et al.,
1998):−→

D 0(x,y, ỹ ;0,gy ,−gỹ ) = sup{� : (y + �gy , ỹ − �gỹ ) ∈ P(x)} (2)

P(x) is set of good and bad outputs produced with x.
Output direction (gy ,−gỹ ) ∕= (0,0).
Differences between frontier and actual outputs are
measures of technical inefficiency.
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Properties of the output directional distance function:
D1. Translation Property:−→

D 0(x,y+�gy , ỹ −�gỹ ;0,gy ,−gỹ ) =
−→
D 0(x,y, ỹ ;0,gy ,−gỹ )−� (3)

D2. g-Homogeneity of Degree Minus One:−→
D 0(x,y, ỹ ;0, �gy ,−�gỹ ) = �−1−→D 0(x,y, ỹ ;0,gy ,−gỹ ), � > 0 (4)

D3. Good Output Monotonicity:
y′ ≥ y⇒

−→
D � (x,y′, ỹ ;0,gy ,−gỹ ) ≤

−→
D 0(x,y, ỹ ;0,gy ,−gỹ ) (5)

D4. Bad Output Monotonicity:
ỹ ′ ≥ ỹ ⇒

−→
D � (x,y, ỹ ′;0,gy ,−gỹ ) ≥

−→
D 0(x,y, ỹ ;0,gy ,−gỹ ) (6)

D5. Concavity:−→
D 0(x,y, ỹ ;0,gy ,−gỹ )is concave in(x,y, ỹ) (7)

D6. Non-negativity:−→
D 0(x,y, ỹ ;0,gy ,−gỹ ) ≥ 0⇔ (y, ỹ) ∈ P(x) (8)
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−→
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D3. Good Output Monotonicity:
y′ ≥ y⇒

−→
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Chon Van Le PhD Dissertation



Introduction US Electric Power Industry Directional Distance Function Data and Empirical Results

Quadratic form to approximate output directional distance
function:−→

D 0,it(x,y, ỹ) = idi +
∑

n nxit ,n +
∑

m myit ,m +
∑

l l ỹit ,l
+1

2
∑

n
∑

n′nn′xit ,nxit ,n′ + 1
2
∑

m
∑

m′mm′yit ,myit ,m′

+1
2
∑

l
∑

l ′ll ′ ỹit ,l ỹit ,l ′ +
∑

n
∑

mnmxit ,nyit ,m +
∑

n
∑

lnlxit ,nỹit ,l
+
∑

m
∑

lmlyit ,mỹit ,l + t t + reRE + resRE × KSO2
+renRE × KNOX + retRE × KTSP + "it (9)

di is a dummy variable for utility i , i = 1, ...,F , and
"it = �it + �it (10)

Translation property requires following restrictions:∑
m mgm −

∑
l lgl = −1,∑

mmm′gm −
∑

lm′lgl = 0, ∀m′∑
mml ′gm −

∑
lll ′gl = 0, ∀l ′∑

mnmgm −
∑

lnlgl = 0, ∀n. (11)
Symmetry is imposed on doubly-subscripted coefficients.
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Implicit function theorem calculates partial effects of:
a good output on another good output
−(∂
−→
D 0/∂ym)/(∂

−→
D 0/∂ym′), ∀m,m′;m ∕= m′,

a bad output on another bad output
−(∂
−→
D 0/∂ỹl)/(∂

−→
D 0/∂ỹl ′)), ∀l , l ′; l ∕= l ′,

an input on another input
−(∂
−→
D 0/∂xn)/(∂

−→
D 0/∂xn′), ∀n,n′;n ∕= n′,

an input on a good output and a bad output
−(∂
−→
D 0/∂ym)/(∂

−→
D 0/∂xn), ∀m,n, and

−(∂
−→
D 0/∂ỹl)/(∂

−→
D 0/∂xn), ∀l ,n.

Transform output directional distance function measures
into Malmquist distance function measures:
Dt

0(xit ,yit , ỹit) = 1/(1 +
−→
D t

0(xit ,yit , ỹit)) (12)
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D 0/∂ỹl ′)), ∀l , l ′; l ∕= l ′,

an input on another input
−(∂
−→
D 0/∂xn)/(∂

−→
D 0/∂xn′), ∀n,n′;n ∕= n′,

an input on a good output and a bad output
−(∂
−→
D 0/∂ym)/(∂

−→
D 0/∂xn), ∀m,n, and

−(∂
−→
D 0/∂ỹl)/(∂
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a good output on another good output
−(∂
−→
D 0/∂ym)/(∂

−→
D 0/∂ym′), ∀m,m′;m ∕= m′,

a bad output on another bad output
−(∂
−→
D 0/∂ỹl)/(∂

−→
D 0/∂ỹl ′)), ∀l , l ′; l ∕= l ′,

an input on another input
−(∂
−→
D 0/∂xn)/(∂

−→
D 0/∂xn′), ∀n,n′;n ∕= n′,

an input on a good output and a bad output
−(∂
−→
D 0/∂ym)/(∂

−→
D 0/∂xn), ∀m,n, and

−(∂
−→
D 0/∂ỹl)/(∂

−→
D 0/∂xn), ∀l ,n.

Transform output directional distance function measures
into Malmquist distance function measures:
Dt

0(xit ,yit , ỹit) = 1/(1 +
−→
D t

0(xit ,yit , ỹit)) (12)
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Taking logs of distance function 1 = Dt
0(xit ,yit , ỹit)exp(�it)

and using fitted values from (9) transformed by (12), I get
0 = ln D̂t

0(xit ,yit , ỹit) + �̂it (13)
or �̂it = v̂it + ûit = − ln D̂t

0(xit ,yit , ỹit) (14)

I follow Cornwell, Schmidt, and Sickles (1990) to sweep
away v̂it :
�̂it =

∑
i  idi +

∑
i �idi t + �it (15)

and get fitted values, ũit , consistent estimates of uit .
Add and subtract ũt = mini(ũit), estimated frontier intercept

0 = ln D̂t
0(xit ,yit , ỹit) + ũt + v̂it + ũit − ũt

= ln D̂F ,t
0 (xit ,yit , ỹit) + v̂it + ũF

it
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I follow Cornwell, Schmidt, and Sickles (1990) to sweep
away v̂it :
�̂it =

∑
i  idi +

∑
i �idi t + �it (15)
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Utility i’s technical efficiency in period t:
TEit = exp(−ũF

it )

Efficiency change ECi,t+1 is the change in TE from t to t + 1
ECi,t+1 = TEi,t+1 − TEit

Technical change TCi,t+1:
TCi,t+1 = ln D̂t+1

0 (x,y, ỹ) + ũt+1 − [ln D̂t
0(x,y, ỹ) + ũt ]

indicates the shift in the frontier over time.
Productivity change PCit :

PCit = ECit + TCit

Standardize input and output measures to a zero mean and
unit variance.

Pre-assign the direction (gy ,−gỹ ) with different values
expressing different assumed tradeoffs between good and bad
outputs.
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expressing different assumed tradeoffs between good and bad
outputs.

Chon Van Le PhD Dissertation



Introduction US Electric Power Industry Directional Distance Function Data and Empirical Results

Utility i’s technical efficiency in period t:
TEit = exp(−ũF
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expressing different assumed tradeoffs between good and bad
outputs.

Chon Van Le PhD Dissertation



Introduction US Electric Power Industry Directional Distance Function Data and Empirical Results

Utility i’s technical efficiency in period t:
TEit = exp(−ũF
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Data set:
Extended Fu’s (2009) panel of 78 utilities, spanning from
1988 to 2005.

I add 3 new input variables, i.e., annualized capital costs
KSO2, KNOX, and KTSP spent on SO2, NOX and
particulate removal devices.
I use Integrated Environmental Control Model (IECM)
developed by Department of Engineering and Public Policy
(CMU) with primary data from the U.S. Energy Information
Administration.

Empirical results:
Estimate the directional distance function with 3 sets of
output direction vectors (2,-1), (1,-1), and (1,-2).
Focus on direction vector (1,-1), assuming equal weights.
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Table 3: Partial Derivatives of Directional Distance Function w.r.t.
Outputs

(Direction: gy = 1,−gỹ = −1)
Good Outputs: ∂

−→
D 0/∂y

Residential (SALR) -0.73043
Industrial-Commercial (SALIC) -0.33642

Bad Outputs: ∂
−→
D 0/∂ỹ

SO2 0.06340
CO2 0.00230
NOX 0.00115

Note: These partial effects are averages weighted for electricity sales made by utilities.

These results are consistent with properties D3 and D4 above.
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Table 4: Estimation Results

Variable Coefficient
(standard error)

(2, -1) (1, -1) (1, -2)
Time 0.00577 0.01021 0.00814

(0.0003)∗∗ (0.0006)∗∗ (0.0005)∗∗

Restructuring -0.01535 -0.02371 -0.01987
(0.0043)∗∗ (0.0072)∗∗ (0.0058)∗∗

Restructuring×KNOX -0.00933 -0.01998 -0.01660
(0.0040)∗∗ (0.0067)∗∗ (0.0053)∗∗

Restructuring×KTSP 0.00567 0.01442 0.01470
(0.0051) (0.0086)∗ (0.0069)∗∗

Restructuring×KSO2 0.00798 0.02110 0.01868
(0.0045)∗ (0.0074)∗∗ (0.0059)∗∗

KNOX -0.00563 -0.00888 -0.00108
(0.0042) (0.0070) (0.0056)

... ... ... ...
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Table 5: Partial Effects of Restructuring (percent)

Below-average utilities Above-average utilities
∂KNOX
∂RE -8.52 6.65

∂KSO2
∂RE 5.73 -0.02

∂KTSP
∂RE 2.29 1.35

∂SALR
∂RE -0.21 -0.44

∂SALIC
∂RE -0.77 -0.70
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Table 5: Partial Effects Among Outputs

Below-average utilities Above-average utilities
Good Outputs
∂SALIC
∂SALR -3.6 -1.53

Bad Outputs
∂NOX
∂CO2

7.75 6.15
∂CO2
∂SO2

-0.19 0.67
∂NOX
∂SO2

2.14 -6.51
Bad vs. Good Outputs
∂SO2
∂SALR 88.60 5.40
∂SO2

∂SALIC 67.04 3.72
∂CO2
∂SALR 3.33 -2.50
∂CO2
∂SALIC 0.90 -2.07
∂NOX
∂SALR -22.08 15.54
∂NOX
∂SALIC -6.10 12.52
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Table 6: Partial Effects of Inputs on Outputs

Below-average utilities Above-average utilities
Good Outputs
∂SALR
∂Capital 0.02 0.09
∂SALIC
∂Capital 0.08 0.11
∂SALR
∂Fuel -0.16 0.30
∂SALIC
∂Fuel -0.57 0.39
∂SALR
∂Labor -0.04 0.03
∂SALIC
∂Labor -0.14 0.04

Bad Outputs
∂SO2
∂KSO2 -0.76 -0.72
∂NOX
∂KNOX -0.97 -2.43
∂CO2
∂KSO2 -0.09 0.70
∂CO2
∂KNOX 0.09 0.40
∂CO2
∂KTSP -0.60 2.19
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Table 7: Average Utility TE, EC, TC, PC

1988 1989 1990 1991 1992 1993 1994 1995 1996

TE 0.8729 0.8919 0.9112 0.9314 0.9519 0.9644 0.9745 0.9769 0.9644

EC 0.0191 0.0196 0.0201 0.0206 0.0125 0.0101 0.0024 -0.0125

TC 0.0134 0.0131 0.0126 0.0122 0.0033 -0.0001 -0.0083 -0.0241

PC 0.0334 0.0340 0.0342 0.0092 0.0096 0.0095 -0.0012 -0.0335

1997 1998 1999 2000 2001 2002 2003 2004 2005

TE 0.9522 0.9411 0.9308 0.9307 0.9544 0.9409 0.9309 0.9209 0.9111

EC -0.0123 -0.0119 -0.0114 0.0001 0.0229 -0.0102 -0.0101 -0.0099 -0.0098

TC -0.0246 -0.0249 -0.0253 -0.0133 0.0098 -0.0245 -0.0250 -0.0253 -0.0257

PC -0.0344 -0.0375 -0.0366 -0.0370 0.0712 -0.0287 -0.0287 -0.0283 -0.0283

Chon Van Le PhD Dissertation



Introduction US Electric Power Industry Directional Distance Function Data and Empirical Results

Thank you very much for your attention!
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