Lecture 2:

Further Issues Using OLS with
Time Series Data
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Stationary Time Series

« The assumptions used so far seem to be too restricitive

» Strict exogeneity, homoscedasticity, and no serial correlation are very
demanding requirements, especially in the time series context

» Statistical inference rests on the validity of the normality assumption
» Much weaker assumptions are needed if the sample size is large

A key requirement for large sample analysis of time series is that

the time series in question are stationary and weakly dependent

« Stationary time series

» Loosely speaking, a time series is stationary if its stochastic properties
and its temporal dependence structure do not change over time
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Stationary Time Series (cont.) |IEEE

. Stationary stochastic processes (qua trinh ngau nhién dirng)

A stochastic process {x¢ : t = 1,2, ...} is stationary, if for every
collection of indices 1 < t1 < to < ... < ¢, the joint distribution of

(Tty, Ttoy - - - Tt,,,) IS the same as that of (T¢y+hs Teot-hy - - s Tty +h)
for all integers h > 1,

= Covariance stationary processes (qua trinh dirng hiép phuong sai)

A stochastic process {x: : t = 1,2,...} is covariance stationary, if its

expected value, its variance, and its covariances are constant over time:
1) E(z¢) = p, 2) Var(zy) = o2, and 3) Cov(xg, Tyyp) = f(h).
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Implications of Stationarity

e Mean is stationary: [y, = E(y;) = E(Viim)
— Constant mean (equilibrium) level
— These time series will exhibit mean reversion

e Variance is stationary: Gzy = E[(v; - uy)z] = E[(Vim - uy)z]
—>Probability of fluctuation from mean level is same at any point in
time

e Covariance (for any lag k) is stationary: yi = Cov(y: Vix) = E[(V: - Ly)

(Vesk = My)]
— E[(ytﬂn - uy) (Yt+l]1+k - u}’)]

Implies that covariance only depends on lag length, not on point in
time|
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* The y series 1s stationary when its mean and variance
are constant across time and the covariance between y:¢
and yt-h(and yt+r) depends only on the distance
between two terms, i.e., h, and not on the specific value
of t. It follows immediately that the correlation also
depends only on distance, h.

* If the series is not (weakly) stationary, then it 1s non-
stationary series. A NON-stationary series will have a
time-varying mean or a time-varying variance or both.
For example, exchange rates and housing prices are
usually non-stationary.
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Remark: Why do we need to make sure that
the time series process is at least covariance

stationary?

« Practically speaking, if we want to understand the relationship
between two or more variables using regression analysis, we need to
assume some sort of stationarity. In other words, if we allow the
relationship between two variables, say yt and xt, to change arbitrarily
over time, then we cannot hope to learn much about a change in one
variable affects the other variable.

« If the time series is not stationary, we can study its behavior only for
the time period consideration. Each set of time series data will
therefore be for a particular episode. Therefore, for the purpose of
forecasting time series may be of little practical value.
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Example: Can we compare the “indexes”
between Singapore and Hong Kong

directly?
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Example: Are the following time
series data covariance stationary?

« Vietnam’s inflation rate
« Vietnam’s consumer price index (CPI)
= Vietham’s GDP

« Take data plot in Stata
= Code: line var time_var
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Weakly dependent time series lli%%

« Weakly dependent time series

A stochastic process {x¢ : t = 1,2, ...} is weakly dependent, if x;

is "almost independent” of zs; if h grows to infinity (for all ¢ ).

= Discussion of the weak dependence (phu thuoc yéu) property

» An implication of weak dependence is that the correlation between
x¢ and x4 p, must converge to zero if h grows to infinity

» (Note that a series may be nonstationary but weakly dependent)
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Stationarity vs. Weak Dependency

= Stationarity (tinh dirng) deals with joint distributioE
(phan phdi dong thoi) being same over time.

= Weak dependency (phu thuoc yéu) deals with how
strongly related xt and xt+h are as distance (h) gets large.
As k increases, if xt and xt+h are “almost indepdendent,”
then is weakly stationary.

=« Weak dependency/stationarity: This assumption replaces
assumption of random sampling = allows LLN and CLT to

hold to get consistent OLS estimates.
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Examples for weakly

dependent time series

binh trugt bac nhat

Lt = €t -|— (X1€¢_1 <«—— The process is a short moving average of an i.i.d. series e,

The process is weakly dependent because observations that are more than one time period apart have
nothing in common and are therefore uncorrelated.

= Autoregressive process of order one (AR(1)): Qua trinh tu hoi quy
bac nhat
_ The process carries over to a certain extent the value of the
Yyt = p1yr—1+ e s— <P

previous period (plus random shocks from an i.i.d. series e,)

= Corr(ye, yn) = Pl

If the stability condition |p1| < 1 holds, the process is weakly dependent because serial
correlation converges to zero as the distance between observations grows to infinity.
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Why is an MA(1) process

weakly dependent? -
For example, x21s independent of x: because {e:} lﬁ[ ¢
1s independent across t.

Due to the 1dentical distribution assumption on
the e, {x:} 1n (11.1) 1s actually stationary.

Thus, an MA(1) is a stationary, weakly
dependent sequence, and the law of large
numbers and the central limit theorem can be
applied to {x.}.
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Autoregressive process of order one
(AR(1)): Qua trinh tu hoi quy bac nhat

Now, we can find the covariance between y, and y,,, for h = 1. Using repeated
substitution,

Vish = P Visn— T €y = Pl(PLJ’Hﬁ—z + €r+n—l} t €y
= p;:yr+ﬁ'—2 + P T e, = -
- F'Tyr + p;"]EH] + ...+ P1€in— + €rin

Because E(y,) = 0 for all ¢, we can multiply this last equation by y, and take expectations
to obtain Cov(y,, y,.,). Using the fact that e,.; is uncorrelated with y, for all j = 1 gives

Cov(y.y.») = EQyy,.) = pfE(}) + p/'E(ye,,,) + ... + E(ye,.,)
= piEGD) = plos.

Because o, is the standard deviation of both y, and y,,,, we can easily find the correlation
between v, and y,, for any h = 1:

Corr(y,, ¥,,,) = Cov(y,, y,. /(o)) = pl. 11.4

In particular, Corr(y, v,,,) = p,. so p, is the correlation coefficient between any two adja-
cent terms in the sequence.
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Asymptotic properties of OLS iliEEE

(tinh chat tiém can cua OLS) ""_

« Assumption TS.1' (Linear in parameters)

» Same as assumption TS.1 but now the dependent and independent
variables are assumed to be stationary and weakly dependent

« Assumption TS.2' (No perfect collinearity)
» Same as assumption TS.2
« Assumption TS.3' (Zero conditional mean)

» Now the explanatory variables are assumed to be only contempo-
raneously exogenous rather than strictly exogenous, i.e.

The explanatory variables of the same period are
—_ () —
E(u |Xt) =0 uninformative about the mean of the error term
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Theorem 11.1 (Consistency of ||EEE
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OLS) g oL
o BEE

« Theorem 11.1 (Consistency of OLS)

T5.1-T83" = plimB;=8;, 7i=0,1,...,k

Important note: For consistency it would even suffice to assume that the explanatory
variables are merely contemporaneously uncorrelated with the error term.

=« Why is it important to relax the strict exogeneity assumption?

» Strict exogeneity is a serious restriction because it rules out all kinds of
dynamic relationships between explanatory variables and the error term

» In particular, it rules out feedback from the dep. var. on future values of
the explanat. variables (which is very common in economic contexts)

» Strict exogeneity precludes the use of lagged dep. var. as regressors
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Review: Probability limit

So here is the definition of a probability limit.

Definition: Let X, X5, X3,...beasequences of random variables and let X be a random
variable. X,, — X in probability if for every & > 0 we have

lim P(| X, —X| >¢€)=0.

N—og
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Theorem 11.1 (Consistency of ||EEE

OLS) (cont.) ey

« Why do lagged dependent variables violate strict exogeneity?

— B w4+ «—— This is the simplest possible regression
BO T Blyt 1 ™ t model with a lagged dependent variable

Contemporanous exogeneity: FE'(u¢|y;—1) = O

Strict exogeneity: E(ut|yo, Y1, Yn—1) = O —gyict exogeneity would imply

that the error term is uncorre-
lated with all y,, t=1, ..., n-1

This leads to a contradiction because:
Cov(yt, ur) = B1Cov(yi—1,ur) + Var(ug) >0

=« OLS estimation in the presence of lagged dependent variables

» Under contemporaneous exogeneity, OLS is consistent but biased

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Asymptotic properties of OLS ilig%

(cont.) , "_

« Assumption TS.4' (Homoscedasticity): (phucong sai thuan nhat)

Var(ugxs) = Var(uy) = 2 «—The errors are contemporaneously homoscedastic
t|15t) — ) =

« Assumption TS.5' (No serial correlation): (khong c6 tudng quan chubi)

Conditional on the explanatory variables in
Corr(ut, us|x¢,xs) =0, t # s /periods t and s, the errors are uncorrelated

« Theorem 11.2 (Asymptotic normality of OLS): (tinh tiém cin chudn cla
OLS)

» Under assumptions TS.1' — TS.5', the OLS estimators are asymptotically

normally distributed. Further, the usual OLS standard errors, t-statistics and
F-statistics are asymptotically valid.
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Example: Efficient Markets

Hypothesis (EMH)

« Example: Efficient Markets Hypothesis (EMH)

The EMH in a strict form states that information observable to the market prior to week t should
not help to predict the return during week t. A simplification assumes in addition that only past
returns are considered as relevant information to predict the return in week t.This implies that

E(returng|returng_1,returns_o,...) = E(returny)

A simple way to test the EMH is to specify an AR(1) model. Under the EMH assumption, TS.3' holds
so that an OLS regression can be used to test whether this week's returns depend on last week's.

return; = .180 4 |.059 freturn;_q
(.081) .038)| «—

— There is no evidence against the
EMH. Including more lagged

n = 689, R2 .0035, R2 0020 returns yields similar results.
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Example: Efficient Markets

Hypothesis (EMH) (cont'd)

In the previous example, using an AR(1) model to test the EMH might not detect cor-
relation between weekly returns that are more than one week apart. It is easy to estimate

models with more than one lag. For example. an autoregressive model of order two, or
AR(2) model. is

Vi=By+ By, T By, tu,
E(uf‘.vt—lﬁ }?1_2, -..) - O.

11.17

There are stability conditions on 8, and 3, that are needed to ensure that the AR(2) process
is weakly dependent. but this is not an issue here because the null hypothesis states that
the EMH holds:

Hy: B, =, = 0. 11.18

If we add the homoskedasticity assumption Var(u|y, |, y, ,) = 0%, wWe can use a stan-
dard F statistic to test (11.18). It we estimate an AR(2) model for refurn,, we obtain

return, = .186 + .060 return, , — .038 return, ,
(.081) (.038) (.038)
n = 688. R? = .0048. R? = .0019
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Exercise C11.3

(1) In Example 11.4, it may be that the expected value of the return at time 7, given
past returns, 1s a quadratic function of refurn,_,. To check this possibility, use the
data in NYSE.RAW to estimate

return, = B, + B,return,_, + Byreturn’_, + u,;

report the results in standard form.

(i) State and test the null hypothesis that E(return|return,_,) does not depend on
return,_,. (Hint: There are two restrictions to test here.) What do you conclude?

(iii) Drop return?_, from the model, but add the interaction term refurn,_,-return,_,.
Now test the efficient markets hypothesis.

(iv) What do you conclude about predicting weekly stock returns based on past stock
returns?
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Example 11.5: Expectations

Augmented Phillips Curve

A linear version of the expectations augmented Phillips curve can be written as
inf, — inf? = B,(unem, — w,) + e,

where p, is the natural rate of unemployment and inf? is the expected rate of inflation formed in
year f — |. This model assumes that the natural rate is constant, something that macroeconomists
question. The difference between actual unemployment and the natural rate is called cyclical unem-
ployment, while the difference between actual and expected inflation is called unanticipated infla-
fion. The error term, e, 1s called a supply shock by macroeconomists. If there is a tradeoff between
unanticipated inflation and cyclical unemployment, then 8, < 0. [For a detailed discussion of the
expectations augmented Phillips curve, see Mankiw (1994, Section 11.2).]

To complete this model, we need to make an assumption about inflationary expectations. Under
adaptive expectations, the expected value of current inflation depends on recently observed infla-
tion. A particularly simple formulation is that expected inflation this year is last year’s inflation:
infs = inf,_,. (See Section 18.1 for an alternative formulation of adaptive expectations.) Under this
assumption, we can write

inf, — inf,_, = B, + B,unem, + e,
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Example 11.5: Expectations

Augmented Phillips Curve

or
Ainf, = B, + B,unem, + e,

where Ainf, = inf, — inf,_, and B, = — B, 1, (B, 1s expected to be positive, since B, < 0 and w, > 0.)
Therefore, under adaptive expectations, the expectations augmented Phillips curve relates the change
in inflation to the level of unemployment and a supply shock, e.. If e, 1s uncorrelated with unem,, as is
typically assumed, then we can consistently estimate 3, and 8, by OLS. (We do not have to assume
that, say, future unemployment rates are unaffected by the current supply shock.) We assume that
TS.1' through TS.5" hold. Using the data through 1996 in PHILLIPS.RAW we estimate

Ainf, = 3.03 — .543 unem,

(1.38) (.230) 11.19
n=48. R> = 108, R? = .088.
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Exercise C11.4

Use the data in PHILLIPS.RAW for this exercise, but only through 1996.

(1) In Example 11.5, we assumed that the natural rate of unemployment is con-
stant. An alternative form of the expectations augmented Phillips curve allows
the natural rate of unemployment to depend on past levels of unemployment. In
the simplest case, the natural rate at time 7 equals unem,_,. If we assume adap-
tive expectations, we obtain a Phillips curve where inflation and unemployment
are in first differences:

Ainf = B, + B,Aunem + u.

Estimate this model, report the results in the usual form, and discuss the sign,
size, and statistical significance of ﬁ,.
(11)  Which model fits the data better, (11.19) or the model from part (1)? Explain.
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Exercise C11.8

Use the data in PHILLIPS.RAW for this exercise.

(1) Estimate an AR(1) model for the unemployment rate. Use this equation to pre-
dict the unemployment rate for 2004. Compare this with the actual unemploy-
ment rate for 2004. (You can find this information in a recent Economic Report
of the President.)

(11) Add a lag of inflation to the AR(1) model from part (i). Is inf,_, statistically
significant?

(111) Use the equation from part (i1) to predict the unemployment rate for 2004. Is the
result better or worse than in the model from part (1)?

(iv) Use the method from Section 6.4 to construct a 95% prediction interval for the
2004 unemployment rate. Is the 2004 unemployment rate in the interval?
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Exercise C11.7

Use CONSUMP.RAW for this exercise. One version of the permanent income
hypothesis (PIH) of consumption is that the growth in consumption is unpredictable.
[ Another version is that the change in consumption itself 1s unpredictable; see Mankiw
(1994, Chapter 15) for discussion of the PIH.] Let gc, = log(c,) — log(c,_,) be the
growth 1n real per capita consumption (of nondurables and services). Then the PIH

implies that E(gc/|l,_,) = E(gc,), where I,_, denotes information known at time (r — 1);

in this case, f denotes a year.

(1) Test the PIH by estimating gc, = B, + B,gc,_, + u,. Clearly state the null and
alternative hypotheses. What do you conclude?

(11) To the regression 1n part (1), add gv,_, and i3,_,, where gy, is the growth in real
per capita disposable income and i3, is the interest rate on three-month T-bills;
note that each must be lagged in the regression. Are these two additional vari-
ables jointly significant?
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Using time series In

regression analysis

« Using trend-stationary series in regression analysis
» Time series with deterministic time trends are nonstationary

» If they are stationary around the trend and in addition weakly
dependent, they are called trend-stationary processes

» Trend-stationary processes also satisfy assumption TS.1'

« Using highly persistent time series in regression analysis

» Unfortunately many economic time series violate weak dependence
because they are highly persistent (= strongly dependent)

» In this case OLS methods are generally invalid (unless the CLM hold)

» In some cases transformations to weak dependence are possible
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Trending mean

= A common violation of stationarity

» [rend stationary:. The mean trend is
deterministic. Once the trend is estimated and

removed from the data, the residual series is a
stationary stochastic process.

» Difference stationary. The mean trend is
stochastic. Differencing the series D times

yields a stationary stochastic process.
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Cooking Raw Data
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Non-Stationary Processes
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Types of Non-Stationary

Processes

»« Pure Random Walk (Y, = Y., + &)
« Random Walk with Drift (Y, =a + Y., + &)
» Deterministic Trend (Y, =a + Bt + &)

= Random Walk with Drift and Deterministic
Trend (Y,=a+ Y. ,+ Bt +¢)
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Trend and Difference Stationary
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Conclusion

=« Using non-stationary time series data produces unrelialglle
and spurious results and leads to poor understanding
and forecasting.

= The solution to the problem is to transform the time series
data so that it becomes stationary.

» If the non-stationary process is a random walk with or without a
drift, it is transformed to stationary process by differencing.

» If the time series data analyzed exhibits a deterministic trend, the
spurious results can be avoided by detrending.

» Sometimes the non-stationary series may combine a stochastic
and deterministic trend at the same time and to avoid obtaining
misleading results both differencing and detrending should be
applied, as differencing will remove the trend in the variance and
detrending will remove the deterministic trend.
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Random Walks

« Random walks

The random walk is called random walk because it wanders
Yt = Yp_1 + et from the previous position y,; by an i.i.d. random amount e,

= Yy = (ys_oter 1)ter = ... =e+e 1+.. . +e1+yg

The value today is the accumulation of all past shocks plus an initial value. This is the reason why
the random walk is highly persistent: The effect of a shock will be contained in the series forever.

E(y) = E(yo) The random walk is not covariance stationary
because its variance and its covariance depend
> on time.
Var(y;) = oft
It is also not weakly dependent because the
correlation between observations vanishes very
Corr(yt, yt—|—h) — \/t/(t + h) slowly and this depends on how large t is.
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Random Walks (cont'd)

First, we find the expected value of y,. This 1s most easily done by using repeated
substitution to get

y=e te_,t .. .tTe t+y,
Taking the expected value of both sides gives

E(v,) = E(e,) + E(e,_)) + ... + E(e,) + E(v,)
= E(y,), forall = 1.

Therefore, the expected value of a random walk does not depend on 7. A popular assump-

tion 1s that y, = O—the process begins at zero at time zero—in which case, E(y,) = 0O for
all 7.
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Random Walks (cont'd)

By contrast, the variance of a random walk does change with 7. To compute the vari-
ance of a random walk, for simplicity we assume that y, is nonrandom so that Var(y,) = 0;
this does not affect any important conclusions. Then, by the i.1.d. assumption for {e,},

Var(y,) = Var(e,) + Var(e,_,) + ... + Var(e,) = ot.

In other words, the variance of a random walk increases as a linear function of time. This
shows that the process cannot be stationary.
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Random Walks (cont'd)

Even more importantly, a random walk displays highly persistent behavior in the sense
that the value of y today 1s important for determining the value of y in the very distant
future. To see this, write for /s periods hence,

Vieh =€ T €y T oot e Ty,

Now, suppose at time 7, we want to compute the expected value of y,,, given the current
value y,. Since the expected value of ¢, , given y,, is zero for all j = 1, we have

E(y,.,|v,) = y.forall h = 1.
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Random Walks (cont'd)

Corr(yt, ys+n) = /t/(t + h)
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Examples for random walk

realizations

« Examples for random walk realizations

Two realizations of the random walk y, = y, , + &, with y, = 0,
e, ~ Normal(0,1), and n = 50.

)2
5 -
O e = W o ol e L e e e s e po o s s R e Am SLo Do B nn A i L mow L L A A An
The random walks
wander around with
: no clear direction
_‘]O -
| | |
0 25 50
t
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Examples for random walk

realizations (cont.)

[l

« Three-month T-bill rate as a possible example for a random walk

interest
rate 14 |

1948 1972 1996
year

A random walk is a special case
of a unit root process.

Unit root processes are defined
as the random walk but e, may
be an arbitrary weakly depen-
dent process.

From an economic point of view
it is important to know whether
a time series is highly persistent.
In highly persistent time series,
shocks or policy changes have
lasting/permanent effects, in
weakly dependent processes
their effects are transitory.
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Random walks with drift

« Random walks with drift

L In addition to the usual random walk mechanism, there is
Yt — |20 + Yt—-1 + €t a deterministic increase/decrease (= drift) in each period

= Yyt =|aot|+er+e—1+ ... +te1+ yo

This leads to a linear time trend around which the series follows its random walk behaviour. As there
is no clear direction in which the random walk develops, it may also wander away from the trend.

E(yt) — aot + E(yO) Otherwise, the random walk with drift has similar
properties as the random walk without drift.

Var(y) = agt

Corr(ys, yr4n) = \/t/(t+ h)

Random walks with drift are not covariance
stationary and not weakly dependent.
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Random walks with drift

(cont'd)

What is new is the parameter «,, which 1s called the drift ferm. Essentially, to generate y,, the
constant &, 1s added along with the random noise e, to the previous value y,_,. We can show
that the expected value of y, follows a linear time trend by using repeated substitution:

v, =) e te_, + ...t e T,

Therefore, if y, = 0, E(y,) = a,f: the expected value of y, 1s growing over time if a, > 0
and shrinking over time if @, < 0. By reasoning as we did in the pure random walk case,
we can show that E(y,,,|v,) = a,h + .. and so the best prediction of y,,, at time ¢ is y, plus
the drift as. The variance of y, 1s the same as 1t was in the pure random walk case.

A random walk with drift is another example of a unit root process, because it 1s the
special case p, = | in an AR(1) model with an intercept:

Vi=a, Tt py., te.
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Sample path of a random

walk with drift

« Sample path of a random walk with drift

A realization of the random walk with drift, y, =2 + vy, , + e, withy, = 0, e, ~
Normal(0, 9), and n = 50. The dashed line is the expected value of y,, E(y,) = 2t.

Y
100

Note that the series does not
regularly return to the trend line.
50
Random walks with drift may be
good models for time series that
have an obvious trend but are not
weakly dependent.

0 25 50
t
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Transformations on highly

persistent time series

« Transformations on highly persistent time series

« Order of integration
» Weakly dependent time series are integrated of order zero (= 1(0))

» If a time series has to be differenced one time in order to obtain a
weakly dependent series, it is called integrated of order one (= I(1))

« Examples for I(1) processes
After differencing, the

resulting series are weakly
Yt=Yt—1t+ e = Ay =yt —Y—1 = € dependent (because e, is
weakly dependent).

log(yr) = 109(yr—1) +er = Alog(y:) = e

« Differencing is often a way to achieve weak dependence
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Transformations on highly

persistent time series (cont.)

« Deciding whether a time series is I(1)

There are statistical tests for testing whether a time series is I(1)
(= unit root tests) (not covered in this Chapter)

Alternatively, look at the sample first order autocorrelation:

~ «— Measures how strongly adjacent times series
P1 Corr(yt, Yt— 1) observations are related to each other.

If the sample first order autocorrelation is close to one, this suggests
that the time series may be highly persistent (= contains a unit root)

Alternatively, the series may have a deterministic trend

Both unit root and trend may be eliminated by differencing
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Transformations on highly

persistent time series (cont.)

Differencing time series before using them in regression analysis has another benefit: it
removes any linear time trend. This is easily seen by writing a linearly trending variable as

Vi = Yot vl v,
where v, has a zero mean. Then, Ay, = y, + Av, and so E(Ay,) = y, + E(Av,) = y,. In
other words, E(Ay,) is constant. The same argument works for Alog(y,) when log(y,)

follows a linear time trend. Therefore, rather than including a time trend in a regression,
we can instead difference those variables that show obvious trends.
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Example: Fertility equation

[Fertility Equation]

In Example 10.4, we explained the general fertility rate, gfr, in terms of the value of the personal
exemption, pe. The first order autocorrelations for these series are very large: p,=.977 for gfr and
p, = .964 for pe. These autocorrelations are highly suggestive of unit root behavior, and they raise
serious questions about our use of the usual OLS 7 statistics for this example back in Chapter 10.
Remember, the 7 statistics only have exact 7 distributions under the full set of classical linear model
assumptions. To relax those assumptions in any way and apply asymptotics, we generally need the
underlying series to be 1(0) processes.

We now estimate the equation using first differences (and drop the dummy variable, for
simplicity):

Agfr = —.785 — .043 Ape
(.502) (.028) 11.26
n=71.,R = .032.R = 018.

Now, an increase in pe is estimated to lower gfr contemporaneously, although the estimate is not
statistically different from zero at the 5% level. This gives very different results than when we esti-

© 20 mated the model in levels, and it casts doubt on our earlier analysis. part,



Example: Fertility equation

« Example: Fertility equation

gfrt = ag + ooper + o1per_1 + ooper_o + uy
This equation could be estimated by OLS if the CLM assumptions hold. These may be questionable,
so that one would have to resort to large sample analysis. For large sample analysis, the fertility

series and the series of the personal tax exemption have to be stationary and weakly dependent.
This is questionable because the two series are highly persistent:

ﬁgffr. — .977, ﬁpe — .964

It is therefore better to estimate the equation in first differences. This makes sense because if the
equation holds in levels, it also has to hold in first differences:

Agfr = — .964 — .036 Ape — .014 Ape_1+C110 Ape_
(.468) (.027) (.028) /’(.027)

n =69, R% = 233, k%2 =.197 Estimate of 6
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Example: Wages and

productivity

Example 11.7

[Wages and Productivity]

The variable firwage 1s average hourly wage in the U.S. economy, and ouiphr is output per hour.
One way to estimate the elasticity of hourly wage with respect to output per hour is to estimate the
equation,

log(hrwage,) = B, + B,log(outphr,) + B,t + u,

where the time trend is included because log(hrwage,) and log(outphr,) both display clear, upward,
linear trends. Using the data in EARNS.RAW for the years 1947 through 1987, we obtain

—_— T

log(hrwage,) = —5.33 + 1.64 log(outphr,) — 018 ¢
(.37) (.09) (.002) 11.28
n=41, R = 971, R* = 970,
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Example: Wages and

productivity

o Include trend because both lﬁ
« Example: Wages and productivity series display clear trends.

log(hrwage) = — 5.33 —I-- log(outphr) -t

(.37) 09)\ (.002)

> _ 52 _ The elasticity of hourly wage with respect
n — 41 R 971 R 970 to output per hour (=productivity) seems
implausibly large.

It turns out that even after detrending, both series display sample autocorrelations
close to one so that estimating the equation in first differences seems more adequate:

Alog(hrwage) = — .0036 + (809D A log(outphr)
(.0042) (. I73)\,

This estimate of the elasticity of hourly

2 —> wage with respect to productivity makes
n =40, R 364, R = .348 much more sense.
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: BLUGL
Dynamically complete models [T

= Dynamically complete models

» A model is said to be dynamically complete if enough lagged variab-
les have been included as explanatory variables so that further lags
do not help to explain the dependent variable:

E(ys|xt, yt—1, Xt—1, Yt—2, - - - ) = E(ye|xt)
« Dynamic completeness implies absence of serial correlation

» If further lags actually belong in the regression, their omission will
cause serial correlation (if the variables are serially correlated)

=« One can easily test for dynamic completeness

» If lags cannot be excluded, this suggests there is serial correlation
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Dynamically complete models

(cont'd)

Consider the simple static regression model

}?z — BO + B]Zg + up 1 1.30

where y, and z, are contemporaneously dated. For consistency of OLS, we only need
E(u|z) = 0. Generally, the {u,} will be serially correlated. However, if we assume that

E(u,

Zo Vieys Zyys +--) = 0, 11.31

then (as we will show generally later) Assumption TS.5" holds. In particular, the {u,} are
serially uncorrelated. Naturally, assumption (11.31) implies that z, is contemporaneously
exogenous, that is, E(uz,) = 0.

To gain insight into the meaning of (11.31), we can write (11.30) and (11.31) equiva-
lently as

EOlzs Viers Zors ) = E(0fz) = By + Biz,s 11.32
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Dynamically complete models

(cont'd)

Next, consider a finite distributed lag model with two lags:

v, =By T Bz, + Bz t Bz, tou, 11.33

Since we are hoping to capture the lagged effects that z has on y, we would naturally
assume that (11.33) captures the distributed lag dynamics:

E(.}?t ZI’ Zr—]’ Z{—Z& Zr_33 .. ') = E(‘}’I Zp ZF—]’ ZI—2); l 1-34

that 1s, at most two lags of z matter. If (11.31) holds, we can make further statements:
once we have controlled for z and its two lags, no lags of y or additional lags of 7 affect
current y:

E(y,

Zo Viers Zeps ---) = BV 21 Z0)- 11.35

Equation (11.35) 1s more likely than (11.32), but it still rules out lagged y affecting
current y.



Dynamically complete models

(cont'd)

Next, consider a model with one lag of both y and z:

vi=Bo+ Bzt Byt Bz T ou.

Since this model includes a lagged dependent variable, (11.31) 1s a natural assumption, as
it implies that

Elz, Y1 2 Yias ) = B2 v 10 2,0):

in other words, once z,, v,_,, and z,_, have been controlled for, no further lags of either y
or 7 affect current y.
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Dynamically complete models

(cont'd)

In the general model

Ve = B{] + lerl + ...+ Bk‘xrk + U, 11.36

where the explanatory variables x, = (x,, ..., x,) may or may not contain lags of y or z,
(11.31) becomes

E(u,

X, Vs X,y ...) = 0. 11.37

Written in terms of y,,

E(v|x.v, . X_,....) = E(y|x)). 11.38

In other words, whatever 1s in x,, enough lags have been included so that further lags of y
and the explanatory variables do not matter for explaining y,. When this condition holds,
we have a dynamically complete model. As we saw earlier, dynamic completeness can
be a very strong assumption for static and finite distributed lag models.
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Example 11.8

[Fertility Equation]

In equation (11.27), we estimated a distributed lag model for Agfr on Ape, allowing for two lags
of Ape. For this model to be dynamically complete in the sense of (11.38), neither lags of Agfr nor
further lags of Ape should appear in the equation. We can easily see that this is false by adding
Agfr_,: the coefficient estimate is .300, and its 7 statistic is 2.84. Thus, the model is not dynamically
complete in the sense of (11.38).

Agfr = —.964 — .036 Ape — .014 Ape_, + .110 Ape_,
(468) (.027) (.028) (.027) 11.27
n =69, R*= 233, R* = .197.
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Sequential exogeneity

« Sequential exogeneity

» A set of explanatory variables is said to be sequentially exogenous if
"enough" lagged explanatory variables have been included:

E(ug|x¢, X 1,...) = E(ug) =0

» Sequential exogeneity is weaker than strict exogeneity

» Sequential exogeneity is equivalent to dynamic completeness if the
explanatory variables contain a lagged dependent variable

= Should all regression models be dynamically complete?

» Not necessarily: If sequential exogeneity holds, causal effects will be
correctly estimated; absence of serial correlation is not crucial
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*ENEIE

=« Sequential exogeneity is implied by strict exogeneity and
sequential exogeneity implies contemporaneous exogeneity.

« Because (xt, xt-1, ...) is a subset of (xt, yt-1, xt-1, ...),
sequential exogeneity is implied by dynamic completeness.

« If xt contains yt-1, the dynamic completeness and sequential
exogeneity are the same condition.

=« When xt does not contain yt-1, sequential exogeneity allows
for the possibility that the dynamics are not complete in the
sense of capturing the relationship between yt and all past
values of y and other explanatory variables.
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Example 11.5: Expectations

Augmented Phillips Curve

A linear version of the expectations augmented Phillips curve can be written as
inf, — inf? = B,(unem, — w,) + e,

where p, is the natural rate of unemployment and inf? is the expected rate of inflation formed in
year f — |. This model assumes that the natural rate is constant, something that macroeconomists
question. The difference between actual unemployment and the natural rate is called cyclical unem-
ployment, while the difference between actual and expected inflation is called unanticipated infla-
fion. The error term, e, 1s called a supply shock by macroeconomists. If there is a tradeoff between
unanticipated inflation and cyclical unemployment, then 8, < 0. [For a detailed discussion of the
expectations augmented Phillips curve, see Mankiw (1994, Section 11.2).]

To complete this model, we need to make an assumption about inflationary expectations. Under
adaptive expectations, the expected value of current inflation depends on recently observed infla-
tion. A particularly simple formulation is that expected inflation this year is last year’s inflation:
infs = inf,_,. (See Section 18.1 for an alternative formulation of adaptive expectations.) Under this
assumption, we can write

inf, — inf,_, = B, + B,unem, + e,
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Example 11.5: Expectations

Augmented Phillips Curve

or
Ainf, = B, + B,unem, + e,

where Ainf, = inf, — inf,_, and B, = — B, 1, (B, 1s expected to be positive, since B, < 0 and w, > 0.)
Therefore, under adaptive expectations, the expectations augmented Phillips curve relates the change
in inflation to the level of unemployment and a supply shock, e.. If e, 1s uncorrelated with unem,, as is
typically assumed, then we can consistently estimate 3, and 8, by OLS. (We do not have to assume
that, say, future unemployment rates are unaffected by the current supply shock.) We assume that
TS.1' through TS.5" hold. Using the data through 1996 in PHILLIPS.RAW we estimate

Ainf, = 3.03 — .543 unem,

(1.38) (.230) 11.19
n=48. R> = 108, R? = .088.
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Exercise C11.4

Use the data in PHILLIPS.RAW for this exercise, but only through 1996.

(1) In Example 11.5, we assumed that the natural rate of unemployment is con-
stant. An alternative form of the expectations augmented Phillips curve allows
the natural rate of unemployment to depend on past levels of unemployment. In
the simplest case, the natural rate at time 7 equals unem,_,. If we assume adap-
tive expectations, we obtain a Phillips curve where inflation and unemployment
are in first differences:

Ainf = B, + B,Aunem + u.

Estimate this model, report the results in the usual form, and discuss the sign,
size, and statistical significance of ﬁ,.
(11)  Which model fits the data better, (11.19) or the model from part (1)? Explain.
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Exercise C11.8

Use the data in PHILLIPS.RAW for this exercise.

(1) Estimate an AR(1) model for the unemployment rate. Use this equation to pre-
dict the unemployment rate for 2004. Compare this with the actual unemploy-
ment rate for 2004. (You can find this information in a recent Economic Report
of the President.)

(11) Add a lag of inflation to the AR(1) model from part (i). Is inf,_, statistically
significant?

(111) Use the equation from part (i1) to predict the unemployment rate for 2004. Is the
result better or worse than in the model from part (1)?

(iv) Use the method from Section 6.4 to construct a 95% prediction interval for the
2004 unemployment rate. Is the 2004 unemployment rate in the interval?

© 2013 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.



Exercise C11.7

Use CONSUMP.RAW for this exercise. One version of the permanent income
hypothesis (PIH) of consumption is that the growth in consumption is unpredictable.
[ Another version is that the change in consumption itself 1s unpredictable; see Mankiw
(1994, Chapter 15) for discussion of the PIH.] Let gc, = log(c,) — log(c,_,) be the
growth 1n real per capita consumption (of nondurables and services). Then the PIH

implies that E(gc/|l,_,) = E(gc,), where I,_, denotes information known at time (r — 1);

in this case, f denotes a year.

(1) Test the PIH by estimating gc, = B, + B,gc,_, + u,. Clearly state the null and
alternative hypotheses. What do you conclude?

(11) To the regression 1n part (1), add gv,_, and i3,_,, where gy, is the growth in real
per capita disposable income and i3, is the interest rate on three-month T-bills;
note that each must be lagged in the regression. Are these two additional vari-
ables jointly significant?
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