Khoa học dữ liệu trong Chính sách công

Huỳnh Nhật Nam, Vladimir Yapit Mariano & Võ Tuấn Kiệt
Ngày: 26/10/2022 23:28; Kích thước: 119,150 bytes
Vui lòng tham khảo trên Microsoft Teams

The first part of the course will introduce the fundamental principles and concepts underlyingcommon algorithms in machine learning and their applications in business and policy. Morespecifically, students will first be introduced to the concepts of bias-variance tradeoff andoverfitting, which are arguably the bedrock of developing effective predictive analytic models.

Techniques to help identify overfitting (e.g. cross-validation) and eliminate overfitting (e.g.regularisation) of predictive models will be presented. While students may have been familiarwith parametric approaches to predictive analytics (e.g. regression models introduced in ‘Quantitative Methods’ courses), this course aims to introduce students to non-parametricapproaches (with a focus on classification problems), such as K-nearest neighbours, treebasedmethods, and support vector machines. They will also be introduced to the principlesand application of popular unsupervised methods, such as hierarchical and k-means clusteringalgorithms.

The second part of the course will introduce students to the use of off-the-shelf artificialintelligence libraries for image processing, with a focus (and hands-on exercises) on their usefor satellite image processing, facial recognition and vehicle counting.

The courses will consist of lectures and computing exercises which are designed to helpstudents practice and thus understand better the theoretical concepts presented in thelectures. The lectures are not intended to be mathematical intensive. Mathematical details willbe provided just enough to help students understand the data science concepts andassociated techniques. The programming language Python will be used to demonstrate theseconcepts and techniques. Students will be required to write codes in Python for exercises,assignments and the final exam. While a brief introduction to Python for data manipulation willbe provided, it is recommended that students have prior knowledge of programming, eitherwith Python or another language.

The course will be taught in English (without interpretation).

Trang web này sử dụng cookies để cung cấp trải nghiệm người dùng tốt hơn.

Các cookies cần thiết (Essential Cookies) được mặc định và là cơ sở để trang web hoạt động chính xác. Cookies phân tích (Analytics cookies) thu thập dữ liệu ẩn danh để cải thiện và theo dõi website. Cookies hiệu suất (Performance cookies) được sử dụng bởi bên thứ ba để tối ưu hóa các ứng dụng (như video và bản đồ) được tích hợp trong trang web của chúng tôi. Để chấp nhận tất cả cookies, vui lòng bấm vào 'Tôi chấp nhận.'